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Abstract

In this paper we derive a relationship of the leading coefficient of the Laurent expansion of the Ruelle zeta
function at s = 0 and the analytic torsion for hyperbolic manifolds with cusps. Here, the analytic torsion is
defined by a certain regularized trace following Melrose [R.B. Melrose, The Atiyah—Patodi—Singer Index
Theorem, Res. Notes Math., vol. 4, A K. Peters, Ltd., Wellesley, MA, 1993]. This extends the result of Fried,
which was proved for the compact case in [D. Fried, Analytic torsion and closed geodesics on hyperbolic
manifolds, Invent. Math. 84 (3) (1986) 523-540], to a noncompact case.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we derive an equality between the leading coefficient of the Laurent expansion
of the Ruelle zeta function at s = 0 and the analytic torsion for hyperbolic manifolds with cusps.
This extends the result of Fried, which was proved for the compact case in [6], to a noncompact
case. Here the analytic torsion for manifolds with cusps is defined by a certain regularized trace
following the idea of the b-trace of Melrose [16].

This paper can be considered as a continuation of our previous study [21] of the relationship
between a special value of the odd type Selberg zeta function and the eta invariant which extends
the result of Millson [18] to hyperbolic manifolds with cusps.
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Let X denote a d-dimensional hyperbolic manifold with cusps, which is given by
Xr=1"\800(d,1)/SO(d)

where I is a co-finite discrete subgroup in SOg(d, 1). We assume that X i is equipped with the
constant negative curvature —1. We also assume that I" is neat (hence torsion free), that is, the
group generated by the eigenvalues of I" contains no root of unity. A consequence of this is

Ip:='NP=INNP) forPePr (1.1)

where N (P) is the nilpotent part of P and ¥y = {Py,..., P} denotes a complete set of I"-
conjugacy classes of I"-cuspidal subgroups of G.
The Ruelle zeta function R, (s) over X r is now defined by

Ry(s):= [] det(id— x(p)e1€)~"
y€PIhyp

for Re(s) > (d — 1). Here PI%y, denotes the set of I'-conjugacy classes of the primitive hyper-
bolic elements in I", the determinant denoted by “det” is taken over the representation space V
of a unitary representation x of I", and [(C,) denotes the length of the closed geodesic deter-
mined by a hyperbolic element y.

Let us recall some results about R, (s) in [10] when d = 2n + 1. First, by Theorem 1.1 of [10],
the Ruelle zeta function R, (s) has a meromorphic extension to C. Second, let Ny be the order
of the singularity of R, (s) at s = 0 such that

R:(0) :=Sn§(1)sN0RX (s) € C — {0, 00}.

By Theorem 1.2 of [10], we have that if d =2n + 1,

n n—1
_ _ 1)k _ ket (21 _ n(zn_2>
No=2) (-Df(n+1 k)ﬁwg( ) bk<k +de O (12)

k=0 1

where By := dimker;>(Ax) with the Hodge Laplacian Ay acting on the space of differential
k-forms twisted by x over X, by denotes the order of the singularity of the determinant of a
certain scattering operator C § (o, s) at s = % — k, and d.(x) is the sum of the dimensions of
the maximal subspaces of V,’s where x|rnp acts trivially for P € B (see (3.2)).

From (1.2), we can see that if d =2n + 1 the behavior of the Ruelle zeta function R, (s) at
s = 0 is related to the spectral data of the Hodge Laplacians Aj’s, and it is a natural question
whether the leading coefficient Rj‘( (0) may have a relationship with another spectral data. In [6],
it was proved that this is equal to the analytic torsion (up to a constant) for odd-dimensional
compact hyperbolic manifold X . Since we do not have an analytic torsion for our noncompact
case, we need to introduce an analytic torsion 7' (X i, x) which is linked to the leading coefficient
R} (0). To do this, first of all we define the spectral zeta function of the Hodge Laplacian A
using a certain regularized trace of the heat operator of Ay. In Theorem 6.1 we show that this
spectral zeta function of Ay is regular at s = 0. Then we can define the regularized determinants
of Ag’s and the analytic torsion T (X, x) in the usual way as in the compact case. Actually this
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approach was suggested by Melrose in [16] and the regularized trace in this paper is essentially
the same as the b-trace of Melrose. Following this idea, Hassell defined b-analytic torsion for
certain noncompact manifolds in [12]. We refer to Section 6 for the precise definitions of the
spectral zeta function of Ay and T(X, ).

The following theorem states a relationship of R; (0) with the analytic torsion T(Xr, x)
where some defect terms are given from the cusps (geometrically) and the scattering data of Ay’s
(analytically).

Theorem 1.1. For a (2n + 1)-dimensional hyperbolic manifold X r with cusps, the following
equality holds up to sign,

REO)'=CXr, ) C@* X - S(Xr. x) - T(Xr. x). (1.3)
Here
o (=D nl k+1 k
CXr.x):=[[(-4( —k)?) o c@=T[2 N - e
k=0 k=0

where oy := P — Br—1 + Br—a — - £ Bo. e1 = (¥) — (7 ), e2 = @n =2k + D(F) = (4,

n—1
sxr.0 =[]y WD it S, = lim (s +n— k) detCh (0, ).
=0 s——(n—k)

This result was announced in [22].

Remark 1.2. Let us observe that C(d) depends only on the dimension d, not on I" although
C(Xr,x), S(Xr, x) depend on I" sensitively. When X is compact, the equality (1.3) is re-
duced to the formula of Fried in [6]. Actually we can see that the same formula holds under a
more general condition that d.(x) = 0 even if X may have cusps. In fact, if d.(x) = 0, then Ny
is given only by the B;’s in (1.2) and C(d)%X) = §(Xr, x) = 1. Moreover the sign ambiguity
in Theorem 1.1 disappears since this comes from the scattering operators Cf( (0%, $).

Remark 1.3. In [26,27], Sugiyama studied the geometric analogues of the Iwasawa conjecture
for 3-dimensional hyperbolic manifolds. He proved that the Laurent expansion of the Ruelle zeta
function R, (s) at s = O satisfies several analogues of the Iwasawa conjecture in the algebraic
number theory under the condition d.(x) = 0. In particular, in [27] it is proved that R;"( 0) is
essentially given by the Reidemeister torsion for (X, x) if d.(x) = 0. Our Theorem 1.1 is cru-
cially used in its proof. It seems to be interesting to understand the equality (1.3) in Theorem 1.1
for general cases in the view point of the geometric analogues of the Iwasawa conjecture.

Comparing the formulae of the order of the singularity No for even- and odd-dimensional
cases (see (1.2) and Theorem 1.2 of [10]), one can expect that there is less relationship of R;‘( 0
with the spectral data in the even-dimensional case. Actually because of a certain symmetry
(see (8.6)) we can not link R;“( (0) with T (X, x) in the even-dimensional case. It is also known
that the analytic torsion T (X, x) is trivial for even-dimensional compact manifold. However, it
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turned out that this is not true anymore for noncompact hyperbolic manifold X i with cusps, and
that 7 (X, x) has an following explicit expression.

Theorem 1.4. For a 2n-dimensional hyperbolic manifold X i with cusps, the following equality
holds

nl k 2n—1 2n—2 dﬂ(X)
T(Xr, x)= (H(n —1/2— kG- )>> : (1.4)

k=0

Remark 1.5. The right-hand side of (1.4) originates from the non-invariant part of the weighted
unipotent orbital integral on the geometric side of the Selberg trace formula. Geometrically this is
the defect for the Hodge theorem of the de Rham complex for hyperbolic manifolds with cusps.
For the odd-dimensional case, the corresponding term is also contained in the factor C(d) in
Theorem 1.1.

Remark 1.6. For the case of d = 2n, we can also obtain an expression of R; (0) in terms of
similar factors on the right-hand side of (1.3) except T (X, x). This easily follows from the
functional equation of R, (s) presented in Theorem 1.1 of [10]. (The simplest case of d =2 was
also mentioned on p. 162 in [5].)

Now let us explain the structure of this paper. In Section 2, we review the basics of harmonic
analysis over hyperbolic spaces to fix notations and normalizations used in this paper. In Sec-
tion 3, we study the spectral side of the Selberg trace formula. This will explain the motivation
of the regularized trace that is used to define the analytic torsion for hyperbolic manifolds with
cusps. In Section 4, we explain the Selberg trace formula for the nontrivial homogeneous vector
bundles over hyperbolic manifolds with cusps. In Section 5, we completely compute the contri-
bution of the weighted orbital integrals for our case applying the result in [13]. In Section 6, we
define the spectral zeta functions of the Hodge Laplacians using the regularized trace following
Melrose [16] and show that they have meromorphic extensions over C. This enables us to define
the regularized determinant and analytic torsion. In Sections 7 and 8, we prove Theorems 1.1
and 1.4 combining all the results proved in the previous sections. In Appendix A, we perform an
algebraic computation which gives the proof of Theorem 5.3.

2. Harmonic analysis over real hyperbolic space
2.1. Algebraic structures
The d-dimensional real hyperbolic space is the manifold
HIR) = {x e R | xf +x3 + - +xF —x3, = —1, x411 > 0}
equipped with the metric of curvature — 1. The orientation preserving isometries of H¢(R) form
the group G = SOg(d, 1) which is the identity component of SO(d, 1). The isotropy subgroup
K of the base point (0, ..., 0, 1) is isomorphic to SO(d). Hence the real hyperbolic space HY(R)

can be identified with the symmetric space G/K. We denote the Lie algebras of G, K by
g=s0(d, 1), £ = so(d) respectively. The Cartan involution 6 on g gives us the decomposition
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g==E8®p where £, p are the 1, —1 eigenspaces of 0, respectively. The subspace p can be identi-
fied with the tangent space 7,(G/K) = g/t at o = eK € G/K. The invariant metric of curvature
—1 over H4(R) corresponds to the normalized Cartan—Killing form

1

where the Killing form is defined by C(X,Y) =Tr(ad X oadY) for X, Y € g.

Let a be a fixed maximal abelian subspace of p. Then the dimension of a is one. Let M =
SO(d — 1) be the centralizer of A =exp(a) in K with Lie algebra m. (Whend =2, M = Z;.)
Let T)s be a Cartan subgroup in M so that T = T) - A is a Cartan subgroup of G. Let X', be
the system of the positive roots for (mc, tmc). We choose the system X4 of positive roots of
(gc, tc) which do not vanish on ac so that X4 is compatible with X3;. Then the union of X,
with X4 gives the system of positive roots for (gc, tc), which is denoted by Xg. With respect
to the inner product on t. induced from (-,-) in (2.1), we choose an orthonormal basis {e;} of t{.
such that e € a(*c. Then we have:

(1) Whend =2n+1,

Yo={ei+ej(I<i<j<n+1), es—e;j (1<i<j<n+1D},

Ta={e+ej(I<j<n+1), e1—ej(1<j<n+ D}

(2) When d = 2n,

Yo={e(1<i<n), es—ej 1<i<j<n), ei+ej 1<i<j<n)}
Sa={er,ei—ej (I <j<n), ei+e; (1<j<n)l.

We put 8 = e, which is the positive restricted root of (g, a). Let p denote the half sum of the

positive roots of (g, a), thatis, p = (012;1) B. Later on, we shall use the identification

ar =C byrg— A. (2.2)

Let n be the positive root space of § and N =exp(n) C G. The Iwasawa decomposition is given
by G = KAN. From now on we fix the following Haar measure on G,

dg =a**dkdadn =a *"dndadk (2.3)

where g = kan is the Iwasawa decomposition and a*” = exp(2p(loga)). Here dk is the Haar
measure over K with || x dk =1, da is the Euclidean Lebesgue measure on A given by the
identification A = R via ¢, = exp(t H) with H € a, 8(H) = 1, and dn is the Euclidean Lebesgue
measure on N induced by the normalized Cartan—Killing form (-,-) given in (2.1).
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2.2. Homogeneous vector bundle

Let us recall the homogeneous vector bundle over the symmetric space HY (R) = G/K . If T is
aunitary finite-dimensional representation of K, then the sections of the associated homogeneous
vector bundle G x; V; over G/K consist of the map f : G — V; with the condition

fgky=t(k)"'f(g) forgeG, keK. (2.4)

Equivalently, the sections of G x,; V; are equivalence classes of the pairs (g,v) under
(gk,v) ~ (g, t(k)v). For such a section f of G x; V, there is a G-action defined by go - f(g) =
g0f(gy ! g). For instance, the space of k-forms over G/K is given by this construction: Choose
an orthonormal basis for p*. This basis determines left invariant 1-forms wj,...,®wq on G.
A complex-valued k-form w on G/K pulls back to a k-form ' on G given by

/
w = E fi1 ,,,,, i Wip N - Qi

The component functions (f;,,...;,) giveamap f:G — /\k cd satisfying the condition (2.4)
with T = 7; acting on V;, = /\k C¢. All the representations 7 are irreducible representations
of K except when d = 2n and k = n. In this case, 7, decomposes into two irreducible represen-
tations 7,7, 7,” acting on N5 C?, \" C?", respectively. Here A C2" denotes the + exp(%ni )-
eigenspace of the Hodge operator % on /\" C>". Let us recall that the highest weight 1, of the
representation 7 is given by

Mp=ex+e3+---+epyqn for1 <k<n, d=2n+1,
up=ex+es+ - +epy1 fori<k<n—1, d=2n,
/L,df:e2+e3+~~-+en:|:en+1 for d=2n.

Let us denote the irreducible fundamental representations of M = SO(d — 1) by oy’s if
d =2n, and o}’s with k # n, O'nj: if d =2n + 1. These satisfy the following branching laws:

(1) Fork#n withd =2nord =2n+1,

[tklp :o¢]l=1 ifandonlyif oy =0} oroy=o0%_1.
(2) Fork=n and d =2n,

[ty :0o¢]=1 ifandonlyif op=0,=0,_1.
(3) Fork=nandd =2n+1,

[thly :o¢l=1 ifandonlyif oy=0,_1 0roy :ani.
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2.3. Heat kernel of the Hodge Laplacian

The Hodge Laplacian Ay on the space of k-forms for the curvature —1 metric is an invariant
differential operator constructed as follows: We choose a basis E; of £ and a basis E; of p that
are orthonormal with respect to the normalized Cartan—Killing form (-,-). Then

Q==Y E}+) E; (2.5)

is the normalized Casimir element in the center of the universal enveloping algebra of g. For
a representation t of K, let

0= / R(k) ® T (k) dk
k

be the projection from L?(G) ® V; to L*(G, 1) = (L*(G) ® V;)X where R denotes the right
regular representation of G on L2(G). Then the Hodge Laplacian Ay is given by

Ap = 0y (R(=2) ®1dv, ) Qx. (2.6)

That is, the Hodge Laplacian Ay is the restriction to the tx-invariant part of the corresponding
invariant differential operator to —52.

The subgroup Py := NAM is a minimal parabolic subgroup of G. Given (o, Hy) € M and
NS a?é, the following action

(1 R ® U)(nam) = a’*o(m)

defines a representation of Pp on H, where a' denotes exp(iA(loga)). Then the principal series
representation My, ) := Indg0 (1® e* ® o) of G acts on the space

Hop:={f:G = Hy | f(namx) =a**Pa(m) f(x), flx € L*(K)}

by the right translation 5 3 (g) f (x) = f(xg). The following proposition whose proof is similar
to Lemma 1 of [6] gives the action of Ay over Hy, 3 if [tk|p : 0¢] #O0.

Proposition 2.1. If [tx|p : 0¢] # 0, the Hodge Laplacian Ay acts on H, ; by 224+ (% — 2)2

where o, means UnjE ifd=2n+1.

To deal with the heat operator e’ Ak we follow the discussion in Section 2 of [2] or Section 3
of [19]. Let us denote by 2 = — > El2 the normalized Casimir operator of K. Recalling (2.5),
let Ag denote the corresponding left invariant Laplace operator over G; that is,

Ag=—-Q+22x=-) E - Y E;. (2.7)
Using the following well-known formula (for instance, see (A.10) of [1])

T (2 ) = (uk + Pk, Lk + PK) — (PK, PK)
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where pg denotes the half sum of the positive roots of K = SO(d), one can show that
7 (2k) = )‘kIdVrk with Ay = (d — k)k.

(This formula is even true for t, with d = 2n.) By (2.6) and (2.7),

A= 0y (Ag ®Idy, ) Oy — 24 Idy, .

Now let e 26 denote the heat semi-group operator given by a smooth kernel P;,

186 f(g)) = / P(g;"'81) /(g2 dga. for f € L*(G). g1 €G.
G

Hence, the heat semi-group operator of Ay satisfies
e = I g (¢7186 ®1dy, ) Oy, (2.8)

which implies

B (g7 g1) = / (ko) Py (krgy g1ka) i (k) dky do.
KxK

Therefore, the kernel e 2 (g1, 82) =e! Ak (&5 ! g1) satisfies the following covariance relation
e '8 (g1ky, goko) = (k) T e M (g1, g2) Tk (ko) for ki, ky € K. (2.9)

For a fixed r > 0, by Lemma 2.3 in [2], e 1A belongs to the Harish—Chandra L?-Schwartz
space CP(G) for any p > 0. Here C?(G) is the space of all functions f € C°°(G) such that

m _2
sup (1+0(g)"w(g) »
geG

Dngf(g)| <oo foranym >0, Dy, Dy

where o (g) is the geodesic distance between the cosets eK and gK in G/K,

W (g) :/e*p(H(gk)) dk
K
for the Iwasawa decomposition gk = K (gk) exp(H (gk))N(gk), and Dy, D, denote the right,

left invariant differential operators, respectively. Let us remark that C?(G) C CP/(G) if p<p
(see [8, p. 4]). Now we can conclude

Proposition 2.2. For any t > 0, the heat kernel e~ belongs to (CP(G) ® End(V,k))K K for
any p > 0 and e™' 2k satisfies the covariance relation in (2.9).
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Now let hf = tr(e~!2k) where tr is given over V,. Then hlt‘ belongs to C”(G) for p > 0 by
Proposition 2.2. Hence one can define

O . (1) = Trre . (hf) =Tr f I ()70, (g) dg.
G

For a given unitary representation = of G, we define its matrix block of m corresponding to
P, e Homg (7 |k, T) by

D7 (g) = Prﬂ(g_l)PT* for g € G.
We note that @7 (g) € End(V;) for a fixed g € G and

T (k1gks) = T(k2) '@ (@)t (k)™ forkyi, kr € K.

This is an t-spherical function on G on which the normalized Casimir operator §2 in (2.5) acts
by its infinitesimal character. We refer to Section VIII 4-6 in [14] for more details of these facts.
Hence, by Proposition 2.1, for T = 14, m = 714, 5 We have

Akl N 2 (@=1D N\ .«
fe “(g7'81)P7 (g2)dgr =exp( —1( A° + 2 —£ o7 (g1)  (2.10)
G

if [tx|ar : 0¢] # 0 and both sides of (2.10) vanish if [tx |y : o¢] = 0. Taking the trace over V; and
putting g1 = e, we get

. k(,—I\Gm 2 (d—-1) ? BT
dlth/ht (s") @ (gz)dg2=exp(—t<)\ +<T —z) ))q)r © @11
G

by the orthogonality relations for the matrix elements of t where 5? :=tr®I. On the other
hand,

Trn(hf) =/hf(g_1)5f(g)dg for 7 =7y (2.12)
G

Comparing (2.11) and (2.12) and noting 5? (e) =dim V;, we obtain

Proposition 2.3.

O, 1 (hF) = exp(—1 (12 + (Y52 = 0)%))  if[lu s 0] £0,
o 0 if [tklm 2 0e] = 0.
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3. Spectral decomposition for hyperbolic manifolds with cusps
3.1. Hodge Laplacian for hyperbolic manifolds with cusps

Let us choose a unitary representation y of I" on a finite-dimensional hermitian vector space
V, . We now consider the right quasi-regular representation R, on

Hy:i={¢:G— V, |¢p(yx) = x()p(x) fory e I', x € G, || € L*(I'\ G)}

given by (R, (x)¢)(y) = ¢ (yx). Asin [29], this representation R, of G on H, decomposes into
a discrete part and a continuous part. That is,

d d
RX:RXEBR)C( acts on HX=HXEBH;.

The action R;f on Hﬁl( is a Hillbert sum of irreducible representations, each of them occurring
with finite multiplicity and the action of R} on HY is a direct integral, with no irreducible sub-
representations, of principle series.

For a test function & € CP(G) with 0 < p < 1, which is of right K -finite, the induced repre-
sentation Ri (h) is of trace class and

Tr RY (h) =Tr/h(g)R‘yf(g) dg ="y my(x)Trr(h) (3.1)
G neG

where m (77) denotes the multiplicity of 7 € G in H‘f(
Let us recall that a d-dimensional noncompact hyperbolic manifold with cusps is given by

Xr=I\G/K =TI\S0o(d,1)/S0(d)

where I is a cofinite discrete subgroup of G = SOq(d, 1) satisfying the conditions imposed in
the introduction. The vector bundle E ;‘( over X of k-forms twisted by x is given by

EN =V, xy G xq Vo

The Hodge Laplacian Ay acting on the space of sections of V;; over G/K can be naturally
pushed down to a differential operator acting on C;°(Xr, E ;‘(). By abuse of notation, we use the
same notation Ay to denote its self-adjoint extension on

L*(Xr, EY) ={Ifle L*(Xr. Vg) | fFyx) = x(¥) f(x) fory € T},

which consists of the t-isotypic component of H, . In general, the operator Ay on L*(Xr,E ;‘()
has discrete spectrum o, (Ag) as well as continuous spectrum o (A ). The continuous spectrum
of Ay is mainly controlled by the scattering operators C I; (o%,s) and C I; (0%—1, ), which will
be explained in the next subsection, for purely imaginary numbers s = iA € C. These scattering
operators have the matrix forms of size d.(x) where

oGO =Y _dj(x). (32)

j=1
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Here dj(x) denotes the dimension of the maximal subspace of V, over which x|rnp; acts triv-
ially for P; € Br. When d = 2n + 1, the scattering operator C’ (op, s) has the size 2d (x) since

Ui is un-ramified.

3.2. Scattering operators and Maass—Selberg relation
Let

LM)= ) ®d(o)H,. Ru=)_ @do)o

oeM oeM

be the decomposition of the right regular representation Ry, of M on L*(M) where d(o) =
dim H,;. A similar induction procedure to the principal series representation starting with Ry,
instead of o € M gives rise to a unitary representation of G,

Z ®n(o,2) actson Z ®H((0, 1))

oeM oeM
where

(.3) = d(0)7s if wo =0,
- d(0)ns Bd(wo)mys,) ifwo #o.

Here w is the nontrivial element in W (G, A). Now for Pj € 533 r with the corresponding decom—
position P; = NjA;M; where P; _ijox Nj—xijJ Aj —xij Mj—x]Mx
for certain x; € K the above deﬁnltlons carry over to each M w1th obvious changes of notatlon
suchas w(oj,Aj) for 1 < j<k.Forte K with [t]y : 0] 750 let us observe

H(0j. ) == (Ho; 2, ® Vo)X = (H,, @ VO,

and that the t-isotypic component of H( (0, A;)) can be identified with the d(o;) copies of
(Hy; ® Vo)™ if woj =0, or d(o) copies of ((Hy; @ Hyo;) ® Vo)™ if wo;j # 0. The second
case happens if and only if t =1, 0 = a,f withd =2n + 1.

For P = P; € Pr and @ € Vp ® H(o, v) where Vp denotes the maximal invariant subspace
of V, under x|rnp, the Eisenstein series attached to @ is defined as

- d—1
E(P,®,s,x):= Z x (y)estPHY lx))d?(y_lx) for Re(s) > ——

yel/rnp

where H(x) = Hj(x) is given by the decomposition x = N;(x) exp(H; (x))K(x) This is ab-

solutely and uniformly convergent on compact sets in the half plane Re(s) > 5=, and extends
meromorphically to C. These facts can be proved as in [11,29]. For P;, P; € ‘B I, the constant
term of E(P;, @, s, x) along P; is defined by

1

Ep, (P&, s,0) = —— E(P, @, s, nx)d

PP @50 = S AN AN / (Pi, @, 5, nx)dn
NN;j\N;
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and has the following expression along P;,

Ep,(Pi.@.s.0)= ) W HAEO(CT . 5)@) )
wEW(Ai,Aj)

where W(A;, Aj) denotes the set of all bijections w : A; — A; defined by wa; = xajx~! for
x € K and

Cii(w,s):Vp @ H(oi, 1) —> Vp, ® H(0j,T), we W(A;, Aj).

Now combining the operators C]?i (x; wx._l,x j - 5) with the nontrivial element w € W(A, A)
defines the scattering operator

Ci(o.s) onMy(0.1):=Y @Vp, @ H(0).1).
j=1

When t = 74, we denote Cyf (o, 5) by C f( (0, s) for simplicity. In a natural way, we see that

K K
Hy(o,1):= Z@ij ®H(oj, 1) = V. ® H(o,T) where V, := Z ®Vp;.
j=I j=l

The scattering operator has a meromorphic extension over C and it satisfies the well-known
functional equations

Cl(0.5)CL(0,—s)=1d,  Cl(0,5)" =CL(0.5). (3.3)

Now we analyze R)C( (h) for h € C?(G) (0 < p < 1) assuming that & is of fixed t-type. We also

assume that @, (h) = Oy i (h) if wo # o. (The function hf defined in the previous section
satisfies these conditions.) Let us choose an orthonormal basis {®,,, = vy, ® &,} of H, (o, 7).
We put

E(s,x) = ZE(@Dmn, $,X),

m,n

where E(D,,,,s,x) is defined as the usual Eisenstein series E(P, ®,s, x). Then the kernel
K¢(h:x,y)of R; (h) on H;( is given by

o]

K°(h:x,y)= Z [tlm :o]% 7y (0, ) (WE (i, x) @ E(ik,y)*dx

oceM —00

where 7, (0, 1) is the representation of G on H, (o, T) defined by the 7 (07, A;)’s.
For Pj € B, the subset C;(u) = NjA;j(u)K C G is called a cylindrical domain where

Ajw)={a; € Aj | ay =exp(tH;), t > u}.
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Then there is a ug >> 0 such that the sets C;(u) := p(C;j(u)) C Xy =TI\ G/K are disjoint to
each other for u > ug and 1 < j < « where p : G — X denotes the natural projection. The
measure in (2.3) induces the metric

dt? + e Hdn?

over C(u) where dn? is the flat metric over (I" N N)\N;. Weput Xp(u) :=Xr — Uf;:l Cj(u).
Now we have an expansion formula of f X () tr(K°(h : x,x))dx as u — oo in the following
theorem which can be proved as in Section 6 of [29].

Theorem 3.1 (Maass—Selberg relation). For u > ug > 0, we have

/ tr(KC(h :x,x)) dx

Xru)
o0 oo
d(U) T . T .
=Y ltlu rolo—|2u | Oonlh)dr— Op 1 (h) tr(C} (0, —i2)8;5.C} (0, i 1)) dA
O'GM —00 —00

+ 7 O (h) tr(C; (o, O))) 4 O(u_l)_

4. Selberg trace formula
4.1. Trace formula
For 0 < p < 1 the Selberg trace applied to & € C?(G) has the following form,
TrR;(h) =1, (h) + Hy(h) + Uy (h) + Wy (h) + S, (h) + J, (h) 4.1)

where the left-hand side has the form in (3.1). The terms on the right-hand side are explained

as follows. Here I,, H,, U, are given by the identity, hyperbolic, unipotent orbital integrals

respectively. These are invariant tempered distributions on G, which were fully analyzed in [25].
First, for I, (h) we have

I, (h) =dim V, -vol(I" \ G) - h(e).

By the Plancherel theorem,

1 o0
ho = Y d@0um+ Y o [ Onitipo.nds

wead oeM —00

where d(w) denotes the formal degree of w € éd and p(o, A) denotes the Plancherel measure.
Let us recall that for G = SOg(2n + 1, 1) there is no discrete series so that there are no terms
from @d in the above formula. For G = SOg(2n, 1), the discrete series may give a nontrivial
contribution in general. For h = hf, we can see that this contribution is nontrivial only when
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k =n,d = 2n and it is the harmonic part of A, in L?*(G, Vz,) by Theorem 3.2 in [23]. Repeating
the argument for the t-spherical function defined for w € G4 as in Section 2.3, we see that
@w(hf) is a nonzero constant only when k = n, d = 2n and @w(hf) = 0 otherwise. Now we
have

I, (h*) =dim v, - vol(I' \ G) - <Sn k)e(ty)

oo

1 d—1
+ > = / 1O 0D L5, ) dk) 4.2)
4r
[tklmioe]#0 oo

where §,, (k)y=1itk=n,d ="2n, 8n (k) = 0 otherwise, and c(t,) is a constant only depending
on 7,.

By Theorem 3.1 in [17] and taking care of the normalization, the Plancherel measure corre-
sponding to (774, %, Hs,,2) 1s given by

1 -2
plo. A) = nz—‘“”—%)r(n + 5) d(o%)

<[[0*+@—j+D%) [] BP+@n-j?) ifd=2n+1,

1 j=k+1

J

plok, ) = 7274 =D ' (n) =2 d(0}) tanh (7T 1)

k 2\ n—l1 2
1 1
xkﬂ(kz—i—(n—j—i—i))'n (k2+(n—j—§)> ifd=2n, (4.3)

j=k+1

k n

where o, means o, F when d =2n + 1.
The term H, (h) is given by

Hy(h)= Y trx(y)-vol(I, \ Gy)- / h(g~'yg)d(G,g) @.4)
y€lhyp G,\G

where Iy, denotes the set of the I"-conjugacy classes of the hyperbolic elements in I, and I,
G, denote the centralizers of y in I', G respectively. We may assume that a hyperbolic element
y € I' has the form a,m, € ATM where AT = {e'", t > 0}. By Section 6 in [28], we have

vol(I', \ Gy) - / h(g~'yg)d(Gyg)
Gy\G

oo

- Zl(cy)j(y)*‘D(aymy)*‘tm(my)% / O (e~ C™ gy, 4.5)

oeM —o0
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where [(C,,) denotes the length of the closed geodesic determined by y, j (y) denotes the positive

Jw)

integer such that y = y;; "~ with a primitive yy, and

D(aymy) =ab|det(Ad(a,my)~" —1d[,)|.

For h = hf, we have

Hy (h¥) = _Ztrm) Y. UG

yel [tk [p:0¢]70

1(Ccy)? @=1 0 @d=DICy)
A A e

x |det(Ad(a,m,) ! —Id|n)|_ltrag(my)e_Te (4.6)

CRIGY
by Proposition 2.3, the Fourier integral of the Gaussian and a)’,) =e

The terms Uy (h), W, (h) will be discussed later. The scattering term Sy (h) and the residual
term J, (h) have the followmg form,

Sy (h) = Z Z[”M o1d(o) / Tr(7y (0, 1) (W) CL (0, —in)d;,C} (0, 4)) dA

reK oeM

Jy(h)=—~ Z Z[”M o1d(0) Tr(m, (0, 0)(W)CY (0, 0)).

reK oeM

For h = hi‘, these term are

1 —1G24(450 )2 . .
Sy )=~ > d(ag)/ (OHCET 0D 10(CK (00, —i2) 3. Ch (o0, i0)) dh, (A7)

[Tk |m:00]7#0

1 L d=) 2
JX(h)=—Z Z d(op) e T " 1(C (0, 0)), (4.8)
[Tk |m:0¢]#0

which are the finite terms as |u| — oo on the right-hand side of the Maass—Selberg relation in
Theorem 3.1 when h = h¥.

4.2. Unipotent terms

By the computation in [20], the terms U, (h) and W, (h) are given by the sum over P =
NAM € B r of the following term

d
vol(Ip \ N(P)) lim —(szp(s. )T (1. ) 4.9)

under our normalization. Here the Epstein type zeta function ¢p (s, x) is defined by

tp(s, )= Y trx(IX,"“VCHD for Re(s) > 0,
nelp, n#e
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where n = exp(X,) and |X,7|2 = (X, X;)). The other term Tp(h, s) is given by
1 .
Tp(h,s)=m//h(knk*1)|1ogn|<d*m dkdn
N K

where A(n) is the volume of the unit sphere in n. By Section 1 of [20] (and Section 7 of [29]),
we know that s — Tp(h,s) is holomorphic over a certain strip containing the imaginary axis.
Let us remark that condition (1.1) is used in the derivation of (4.9) and will be used in the forth-
coming analysis of ¢p(s, x). Now let us observe that x|r, decomposes into one-dimensional
representations xg’s of I'p (since I'p is abelian by (1.1)) such that

d—1
Xo(n) = exp(2mi(nify + - +ng104-1)) forn=[]n}
j=1

where {n;} denotes a fixed basis of I'p. For P € LB, we decompose

V=Vp@Vpt
where Vp C V is the maximal subspace over which x|r, acts trivially, so that x decomposes
into a direct sum of Idy, and xg’s with nontrivial 0 = (61, ...,04—1), that is, one of 6; is not an
integer.

Proposition 4.1. The Epstein type zeta function
Ep(s xo) = Y xo(m)|X,|m@=DOTD
nelp, n#e

has a meromorphic extension over C. This meromorphic function is entire if 0 is nontrivial and
has a simple pole at s = 0 if 6 is trivial.

Proof. Since {p(s, xp) is absolutely convergent for Re(s) > 0, it is enough to consider a mero-
morphic extension of

e =r5 [7( X wme ™ Yar wina =D,
<
0

2
nelp, n#te

over the left half plane Re(s) < 0. By a standard argument, one can obtain such a meromorphic
extension over C if we have the asymptotic expansion of

> xeme ™ ast—o. (4.10)
nelp,n#e

To this end, we recall the Jacobi type identity

d-1
2 Az

3" xome Xl = vol(Ip \ N(P)) ™' <5> e @.11)
nelp ! Ak
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where A denotes the eigenvalues of the Laplacian Ay acting on the space of the sections of
the flat vector bundle defined by xy over I'p \ N(P). The equality (4.11) follows by putting
t = (45)~! at the following equality

Tr(e™27) = / (4ms)~ (ZX@(n)g mﬂ”’)

rp\N(P) nel’

where d(n, nn) denotes the Euclidean distance given by the normalized Cartan—Killing form,
which equals to |X;|. Then Ay has the zero eigenvalue if and only if 0 is trivial. Hence

> xeme X = —1 4 R@)

nelp, n#e

where R(t) = O(e™ r) for a certain ¢ > 0 as t+ — 0 if 6 is nontrivial and 7~ + O(e” t)
as t — 0 if 0 is trivial. It follows that the meromorphic extension of ¢{p (s, X@) is entire if 6 is
nontrivial and has a simple pole at s = 0 if 0 is trivial. O

Now we have

tp(s. ) =dp(x)- D X[ @PEED LI N w1 Xy TP (412)

nelp,n#e 0 nelp,n#e

where dp(x) = dim Vp and the second sum runs over the nontrivial 6. The first and second
sums on the right-hand side of (4.12) have a simple pole, and is regular at s = 0, respectively, by
Proposition 4.1. Therefore we conclude

d ~
31_% a(SKP(S, X)Tp(h,s)) =dp(x)(CpTp(h) + RpTp(h)) + CpTp(h) (4.13)

where Cp, Rp denote, respectively, the constant term and the residue of the ordinary Epstein
zeta function at s = 0, Cp denotes the sum of the constant terms of {p (s, xg) with nontrivial 6

ats =0, and
Tp(h)— /f knk dkdn,
N K

d
Tp(h) = ( h(knk~ log|logn|dkdn.

K

The term U, (h) is the sum over P € ‘B of the invariant part of the right-hand side of (4.13),
that is,

Ugy =3 vol(I'p, \ N(P)(dp,()Cp, +Cp,) Tr, (h) @.14)
PiePBr
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with

i T
ij(h)zm %E / Op..(h) dA 4.15)
[AS] —00

by Section 6 in [28]. The remaining part is

W, (h) = Z vol(I'p; \ N(P)))dp; (x)Rp, Tp, ().
PiePr |

By the computation in [3],

(d—-1)

——~=1 forPe
A(n) or Br

vol(I'p \ N(P))Rp
under our normalization. Hence

Wx(h):dc(x)//h(knk”)log|1ogn|dkdn. (4.16)
N K

5. Computation of the weighted orbital integral
5.1. Weighted orbital integral

The weighted orbital integral given in (4.16)

WX(h)=dc(x)//h(knk_1)log|logn|dkdn (5.1
N K

is a non-invariant tempered distribution. To explain this, let us recall that the intertwining operator

J5p (0, )\)¢:=/¢(xﬁ)dﬁ:H(,,k(P) — Hys.(P)
N

where the notation H, 5 (P) denotes the principal series representation with its dependence on P.
The restriction to K defines an isomorphism from Hy 5 (P) to

L*(K.Hy):={f: K — Hy | f(mk) =0 (m) f (k). |f| € L*(K)}.

By this isomorphism, JFI p (0, A) can be regarded as a family of operators acting on L*(K, Hy).
Let

Jplo,A:h)= —Tl‘(ﬂg’)»(h)Jp‘P(G, A)‘lai,\lp”,(a, )»))
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where 9;, denotes the derivative under the identification (2.2) for a family of operators acting on
L*(K, H,). Now we can get the invariant part of W, (h) by subtracting the non-invariant part as
follows,

Ip(h)=//h(knk_1)10g|logn|dkdn

__<_pv Zd(a)/JP(a/\ hydx —

oeM oeM

o,o(h)> (5.2)

where 2n (o) is the order of the zero of p(o, ) at A = 0. Now one can consider the Fourier
transform of invariant tempered distribution /p for i € C>(G), which is expressed in terms of the
discrete series and the principal series.

Let H, € tc be the coroot corresponding to & € X, that is, a(Hy) = 2, &’ (Hy) € Z for all
a,a’ € £35, and let

= H H,, (5.3)

O{EEM

which is an element of the symmetric algebra S(tmc). We denote the simple reflection corre-
sponding to o by sy for @ € X'¢. By Corollary on p. 96 of [13] (taking Ap = % with B(Hg) =2),
we have

Proposition 5.1. For h € C*(G) — Cg(G) where Cg(G) is the subspace of the cusp form in C*(G),

11 r
Ip(h) =5 —— > / (0, —2) Oy (h) dA (5.4)

ceEM—xo0

where

I (sqAs)

2(o,A)=2d 1—— H,
(0,2) =2d(@)Y (1) = = > B(Hy)——— T

ote):

V(1420 (Hy)) + ¥ (1 — Ao (Hy))). (5.5)

Here i is the digamma function and Ay — pyy is the highest weight of (o, i) € M x ia.

Remark 5.2. By Lemma 5 in [3], if G = SOg(d, 1) for d > 3, the equality (5.4) still holds
without any contribution from the discrete series for any 4 € C2(G).

5.2. Computation for oy

To express Wy (h) in terms of the elements in @, we use (5.2) and (5.5).
First let us investigate the last term on the right-hand side of (5.2). From (4.3), we have
n—1, n(ef)=0 ifd=2n+1,

n

<
<n—1) if d =2n.
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Next we consider the term given by Jp (o, A : k) in (5.2). For a fixed irreducible representation ,
it is known that the Harish—Chandra C-function C; (o, iA) satisfies

Te I p(0, 1) i dp p(0, 1) = Cr(0,i1) 1 0,Cr (0, i) T
where 77 is the projection to t-isotypic component of H, ;. Hence, if 4 is of t-type, we have
Jp(o,h:h) = =04, (h)Cr(0,ir)19;,C(0,i1) (5.6)
when [t]p : 0] # 0. By Theorem 8.2 in [4], we can derive the following equalities:

(1) Whend =2n+1,

I I I
912 10g Cry (0%, i) = ———— — [ — +--- ,
inlog Cu (o, 1) = (i,\+ +iA+n>
012,108 Coy (011, i%) : S 5.7)
- lo o1, iN)=——"— [ —+--- A
208 ok in—ntk—1 \ix it n
+

where 0, means o,;°.
(2) When d = 2n,

1 1
813 10g Cr, (0%, i3) = ————— + (w(m) — w(ix fn+ —)) +2log2,
ir+n—k—3 2
. 1 . . 1
dirnlog Cr(ok—1,i0) = ————— + (Y (@A) —Ylii+n+ ) ) +2log2 (5.8)
ir—n+k—; 2

where 7, means 7.

Now the remaining task to compute W, (k) is to obtain an explicit form of £2(oy, A) which
express /p(h) in terms of the principal series.

Theorem 5.3. For the representations oy of SO(d — 1) for 0 < k < [%], we have

d(oy) . d—1 . d—1 . .

Cpked=l g /KL _ d-1 .
N M(Z(—l)’d(m‘ﬂr > (—1>f+‘d(vj)> - PG

2 d—=1 _ 12
A+ (5 k) j=0 j=k+1

where o, denotes oni ifd=2n+1 and P,f (X) is an even polynomial of 2n — 4 degree for
d=2n+12>50rd="2n >4 and a constant for d =3, 2.

The proof of this theorem will be given in Appendix A.
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For ¢, oy with [t | : 0¢] # 0, we put
1 . .
P (tk, 00, A) 1= _d(Ue)E(aiklogCtk (0¢,i%) — 9j10g Cr, (00, —il)).

Then by equalities (5.7), (5.8) and Theorem 5.3, denoting a possibly different polynomial by the
same notation Pkd (1) (the change happens in the constant term of Pkd (1) only when d = 2n) we
have

Corollary 5.4. The following equalities hold,

=D -k
A2 (-2

k—1 d—1
x (Z(—w‘d(oj) + Z(—l)j+ld(0j)) - P,

j=0 =k

R0k, 1) + D (th, 0k, M) = —d (o) (Y (iA + 1) + Y (—ir + 1) +

(—D*( k)
A2+ (5L — k)2

k d—1
X (Z(—l)jd(aj)+ > (—1)f+1d(aj)> — PA).

j=0 Jj=k+1

20k, 1) + P (Tt1, 0k, ) = —d (o) (YA + 1) + Y (—ir + 1)) +

6. Zeta regularized determinant for hyperbolic manifolds with cusps

Now let us recall that the heat operator e’ Ak gver X I is not of trace class, so that we can not
take its usual trace. To overcome this, we follow the idea of Melrose in [16] as follows. If the
heat operator e ~'2* would be of trace class, then its trace is the same as f Xr tr(e "2 (x, x)) dx,
although this integral diverges in our case. However, we could remove the diverging part of the
expansion of

/ tr(e ™" (x,x))dx asu— oo,

Xru)

by Theorem 3.1 and define the regularized trace Tr;(-) of e /2% to be the remaining finite part
of it. Then we have

Tre(e7'4%) = Z e i 4 Z (al(‘lﬂe_’d%tr(Cf((og,O))

rj€op(Ag) [tklp:0¢]7#0

d o
_d(oe) o102 +dD)
4

—00

(CY (0w, —in)3i,Ch (0p.in)) dk) 6.1)



1734 J. Park / Journal of Functional Analysis 257 (2009) 1713-1758

where 0, (Ay) denotes the point spectrum of Ay, dy = (% —4{), d(o¢) = dim(Vy,). Let us
observe that the right-hand side of (6.1) is the same as the geometric side of the Selberg trace
formula applied to the test function hf over G, so that

Trr(efmk) =1y (hf) + Hy (hf) + Uy (hf) + Wy (hf) (6.2)

by (4.1). Using this regularized trace, let us define the spectral zeta function of Ay by

1 00
Ca(s) := %(/—i—/ )tS_ITrr(e_’Ak — P)dt (6.3)
0 1

where Py denotes the orthogonal projection onto ker;2(Ay). Here the small and large time inte-

grals fol, f 1°° are defined for Re(s) > 0 and Re(s) « 0 respectively. This decomposition of the
integral over the small and large times is needed when d = 2n + 1, kK = n since the continuous
spectrum of Ay reaches zero, that is, the heat operator e ~'** does not decay exponentially as
t — oo. To state the theorem on the meromorphic extension of £, (s), we introduce a notation

k—1
N TN —Ddo; (PN - (72
d(d. k) == (( 1 (j;)( l)fd(oJ))> = < k > ( L >

Then we have

k—1
—2d(d, k) = —2<(—1)"‘1 ( Z(—l)jd(aj)»

j=0
k—1 _ d—1 ‘
= (—U"(Z(—l)fd(o,-) + Z(—l)”‘d@)),
j=0 j=k

which appeared in Corollary 5.4. Now we have

Theorem 6.1. The spectral zeta function {a, (s) = {a,_, (s) has a meromorphic extension over C,
which has the following form if d = 2n

o / oo

© . ﬂk + 8n(k)n°
r = ! He(s),
(62 j:Z_n s+J " j_—%—z) S ) Z ' o
and ifd =2n + 1
00 a;: o0 b;
I = J + :
()ear(5) j;ns+j—% ;)(34‘]——)2
,Bk +8n(k)770
+ 8, (k) Z . + Hy(s)

—J——
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for some constants aj,a;., bj,cj where B = dimker;2(Ay), 8,(k) equals 1 if k =n or k =
(d — n) and vanishes otherwise,

e o l
n°:=dc.(x)d(d,n), n 1=—§(dc(x)d(d,n— 1)
and H,(s), H,(s) are entire functions. In particular, {a, (s) is regular at s = 0.

Proof. Let us first deal with the large time contribution | loo dt in (6.3). The continuous spectrum
of Ay is given by the union of the half intervals [(% — £)2,00) for £ =k, k — 1, hence the
bottom of the continuous spectrum of Ay does not reach zero unless d =2n + 1 and £ =k =n.
Equivalently, Tr; (e ~"2%) decays exponentially as  — oo for other cases, which we can see easily
from the right-hand side of (6.1). Therefore, the large time contribution to the meromorphic
extension is trivial unless d =2n + 1 and £ = k = n. Now for this case, we observe the following
expansion at . =0,

o0
tw(Cy (on, —ir)irClyon, i2)) = D a2j2?,
j=0
which follows from (3.3). From this, we see that

1 o0
fe—tkz tr(c;(a,,,—ix)auc;(an,ix))d,\~ijz—<f+%> as t — oo. (6.4)
-1 Jj=0

The corresponding integrals over (—oo, 1], U [1, 00), decay exponentially as t — co. For d =
2n+1, 0, is un-ramified so that tr(C ; (on, 0)) = 0. Hence the residual term vanishes for this case.

Now the expansion (6.4) and these facts imply that the large time integral | 1°° is well defined for
Re(s) < % and extends meromorphically to the whole complex plane with the following form

o0 oo
/ P T (e - P dr =Y "71] T Hi(s) (6.5)
1 =007

for some constants c¢; and a holomorphic function Hj (s).

Next to deal with the small time integral fol -dt, we use the right-hand side of equality (6.2).
For I, (hf), we separate the cases d = 2n and d = 2n + 1. First, if d = 2n recall that the
Plancherel measure P (oy, A) is a sum of A2XF! tanh(r 1) with 0 < k <n — 1 from (4.3). Now we
observe

00 o0
/ e 32+ anh( 1) dh = (— 1) of / e~ Ltanh(r2) d2
—00

—00

o0

= (—1)’<at’</e—” tanh(r /X ) dx

0
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o0

_ e cosh™2 (/)
=(—1)ka{<(r 1%0/6 1 <W>dx>
o vkak [ —1 T [ (—1x)/ Cosh_z(ﬁx/)_f)>
=(=1) Bt<t 2/2 B < 7 dx ). (6.6)
o J
Hence if d = 2n, we conclude
I (k) = TN a8, (0ET, X, ) ©6.7)

t=k k—1 j=0

where a¢; are some constants and Su(k)E(T, X, Tn) is the contribution from the first term on the
right-hand side of (4.2). Second, if d = 2n + 1 recall that the Plancherel measure p(oy, A) is
a polynomial of order 2n from (4.3). Hence we can easily see

n
Ly= Y .S gyt (6.8)
j=0

=k,k—1

for some constants ay;. For Hf (h];), by (4.6), we have

2

Hy (hf) ~ae" % ast—0 (6.9)

for a constant a and ¢ := mingy hyperbolic}/ (Cy ) is a positive real number. For U, (h’,‘ ), by (4.14)
and (4.15) we can see that this can be dealt as I, (hf) for d =2n + 1 and it consists of the terms
with j =7 in (6.8). For W, (h¥), by Corollary 5.4, we have

dc(x)
4

)3 / D (P () + QG + REW)dA. (6.10)

=k, k—1_"ng

Wy (hf) =

(There may be an additional constant from the discrete series on the right-hand side of (6.10)
when d =2, k = 1.) Here P;(A) is an even polynomial of degree at most (2n —4) ford =2n+1
ord =2n,

d
Qe(W) = —d(e) (Y ik + 1) + Y (—ir+ 1), Rif(x)=—(—1)"“52d(d,k)7szd2-
14

It is easy to see that the contribution of Pg()) is just the same as (6.8) replacing n by (n — 2). For
Q¢ (X), we use the following asymptotic expansion

1 ad By
1)~1lo — — ———5r asz—> 09,
Y(z+1) gz + 2% ; 02 z
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where the By ’s are Bernoulli numbers, to obtain

e ¢]

oo
/e*“zQ(()\)dANZajtjf%+bof%10g’ ast — 0 (6.11)

% j=0
for some constants a; and by. By an elementary computation,

9]

i / e*l()\erdgz) 2d( 5 d — _d \/_ 7[[]2’ (612)
dr J A2+ d Ji
which implies
i d
/ e 10T Ed2 di=m + Za T (6.13)
%o Jj=0

for some constants a;. By (6.8), (6.9), (6.11), (6.13), and the Taylor expansion of e gty = 0,
ifd =2n

L () + Hy () + Uy (1) + Wy (h7)

o o o0
~ =8, (k)n° + Z ajt~i+ Z a;-tj_%—Fijtj_%logt ast—>0
j=-n j=—n-2) j=0

for some constants a;, a ,bj where n° =d.(x)d(d,n),and if d =2n + 1
Iy () + Hy (k) + Uy () + Wy ()

o o
~ =S’ + 3 T Y biti T logr ast— 0
j=—n Jj=0

for constants a;, b; where n° = —%(dc(x)d(d, n — 1)). Therefore the small time integral fol is
well defined for Re(s) > % and extends meromorphically on C with the following form if d = 2n

o] o0 / 9]

: a b; 8 (k)¢
regsw=Y 2+ Y ey AT ),

1 _12
j==n =a-p$TIT2 6t —a)

andifd=2n+1

aj > b; ,Bk + 8n(k)n°
rs)a )=y J +X_: (s+]f 0 . + Hy(s)
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for some (new) constants a;, a’., b ;j and a holomorphic function H(z). Ford =2n+1andk =n,
combining this and (6.5) completes the proof. 0O

By Theorem 6.1, we can define the regularized determinant of Ay by

ds X:O;Ak (S)>

d
det; Ay :=exp| ——
and the analytic torsion 7 (X, p) by

det; A (det;Az)?
(det; A2)?  (det; Ag)*”

T(Xr, )= (et Ag_)TVE@D L (det, A ) DT
Note that our definition of analytic torsion is a generalization of the original one given in [24],
which reduces to (the square of) the original one in [24] when X is compact. We also remark
that a similar definition of the analytic torsion was introduced by Hassell in [12] using the b-trace.
For a hyperbolic manifold X with cusps, T (X, x) is nontrivial even if d = 2n as we will
see in Section 8.
In the following section, we will relate T(X, x) with the leading coefficient R;‘( (0) of the
Ruelle zeta function R, (s) at s = 0. To do this, we will need following expression of R, (s) (for
instance, see [6, p. 532]),

d—1
Ry(s) =[] Zy(or.s + ) (6.14)
k=0

in terms of the Selberg zeta function Z, (o¢, s) defined by
= A —(s—45L
Zy(or,s)i=exp(— Y trx(1)j() D) rop(my)e 2 ”(Cﬂ> (6.15)
yEthp
for Re(s) > d — 1. Here we may assume that y is conjugate to a,m, € ATM and D(y) =

D(a,m,). We also put Z, (0,,5) = Zy (0,7,5)Zy(0, ,s) when d =2n + 1. By Theorem 4.6
in [10], the Selberg zeta function Z, (o¢, s) has a meromorphic extension over C.

7. Proof of Theorem 1.1

Throughout this section, we assume d = 2n + 1.
First, taking the Mellin transform M (-) of equality (6.2), we have

M (Tr(e7"2%) — B) = M I, (h¥) + MH, (hF) + MU, (hY) + MW, (h¥) — M(Br). (7.1)
For the left-hand side of (7.1), we have
Lemma 7.1. The following equality holds,

lim (M (Tre(e7"2%) = i) (5) + I'(5) (B + 8a (K)1%)) = £4, (0.

s—0
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Proof. From the definition, we have

1
£ay (0) = lim (22, () = £, (0)) = lim (M (Tre(e ™) = Bi) = I'(5)¢a, (0)).
Moreover, by Theorem 6.1,

Eae(0) = =P — 8, (k)n°.
Our lemma now follows easily. 0O

Now we want to obtain the explicit form of each term at s = O on the right-hand side of (7.1).
First, the last term M () is defined by

1 oo

Mwmn=/f*mm+ff”mm

0 1

where the first (second) term on the right-hand side has a meromorphic extension from the half
plane with Re(s) > 0 (Re(s) <« 0). These terms equal ﬂT" and —%, respectively so that

M(Br)(s) =0. (7.2)

The term M1, (hﬂ‘) is computed in Lemma 3 on p. 533 in [6]. Let us present some details of
these computations for completeness. By Proposition 2.3, (4.2) and (4.3),

[e¢]

1
Iy (h¥) = dimVy -vol(F' \ G) > e—“”—“z—/e—’“p(og,/\)d)\

4
b=k k—1 —00

where p(oy, A) is an even polynomial. Now for the integral part, each monomial can be treated
as

e ¢]

o0
d a
/ =220 g) = <_E> / e d = byt (7.3)
—00

—0o0

where b, = ﬁ% . % .. % so that M I, (hﬂ‘)(s) consists of

0]

1
E,(s) == b, / =5 gm0 gy baF<s —a-— 5)(n —g)~2s—a=) (7.4)

for Re(s) > a + % When £ <n, MI, (h’;) has a meromorphic extension over C and



1740 J. Park / Journal of Functional Analysis 257 (2009) 1713-1758

E.(0) = bal“(—a — %)(n — g%l

n—~{

2
= (—1)at! ﬁ(n — 02+ = _on / ()% d.
a

When £ = n, we split the integral defining E, (s) as we did for M (8x),

1 [e'9)

Ea(s)=ba/f—“—%d;+ba/tH‘—%dr

0 1

where the first (second) term on the right-hand side has a meromorphic extension from the half
plane with Re(s) > 0 (Re(s) <« 0). These terms equal - and — - l;“ -, respectively, so that
—a—3

Nl

E,(s)=0 ifL=n.
In conclusion,
n—=~t
M1, (hF)(0) = ——dlmVX vol(I'\G) > /p(og,lk)dk
t=kk—1

The term U, (hf) and the part with P;(}) in (6.10) denoted by W; (hf) can be dealt in the
same way as we did for I, (hf) and we have

ML () + U () + W) () 0 = 5 3 /Pe(lk)dk (7.5)
22 =k,k— 10
Here
Py(s) = dimVy - vol(I" \ G) p(o¢, 5) — de(x) P{ (5) + C(x, k) (7.6)

where C(x, k) is a constant from U, (hf), which is determined by (4.14), (4.15).
For M H, (hf ), first we recall

1 _
= FTE) f (x(x +20)) e (2x 4+ 2¢)dx  for Re(s) <0,
— S

where ¢ > 0 following [6,18]. Now using
o0

/ e—x(x+20)t (2.76' + 2C)
0

2
e—i‘—,e—tc2 dt = e—l(x+c)
At

and putting c = (n — £), [ =1(Cy) in (4.6), we have

7 . (d
MH, (h*)(s) = Z m/(x(x+2(n—£))) <Elogzx(ag,2n—€+x)>dx (7.7)
0

L=k k—1
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for Re(s) < 0. By Theorem 4.6 in [10], the Selberg zeta function Z, (o¢, s) has a meromorphic
extension over C. In particular, it follows that Z, (o¢, 2n — £ + x) has the following form near
x =0,

Zy (00,20 — £+ x) = Zoy x> (1 4 O (x)) (7.8)

where r,_¢ denotes the order of singularity of Z, (o, s) at s =2n — £. By Theorem 2.1 of [9]
or Theorem 4.6 of [10],

—ay  if € #n,
= 7.9
Fon—t {—2% ife=n, (79)
where
ok := P — Pr—1 + Pr— — - £ fo.
Using this, the integral part on the right-hand side of (7.7) can be analyzed as
i d
/(x(x +2(n — Z)))—x(d_ log Z, (0¢,2n — £ +x)) dx
X
0
o
—/ d logZ, (0¢,2n — £+ x)d
il B g Zy(0¢,2n x)dx
€
€
+ O(s) + O(e) — rzn,g‘/x_s_l (x +2(n — Z))_S dx (7.10)
0
where
€
, _ log2(n — )e) — L+ 0(s) + O(e' 71y if ¢ <,
/x*“l(x+2(n—z)) g = | 108 ("1 ) =5 H O+ O0ET) il<n 00
loge — 5- + O(s) if £ =n.

0

From (7.7), (7.9), (7.10) and (7.11), for small s <O,

MH, (hlf)(s) = Z (—log V4 ) log(Z(n — E)) — O;—e) +O0(s) + 0(6%).
=k k—1

Hence we obtain

lir%(MHX (h)(s) — Bl (s)) = Y —log Zou—¢ + e (log2(n — £)) (7.12)
7 =k k—1

where the term log(2(n — £)) disappears when £ = n.
To analyze the remaining terms of W, (hf) in (6.10), let us denote the corresponding parts
of Wy (hf) with Q¢(%), Re¢(1) for £ =k, k — 1 by W2 (hf), W} (hf) respectively, that is,
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d. [ orroon .
Wf(h{f):-% Z d(oy) /e 102+ ‘>2>(w(u\+1)+w(—u\+1))d,\

=k k—1
de()d(d, k) i (n—0)
w3 (hk) = _ Ge0dld, 1 k7€/ —102+n-0n __ T8
3 (1) o > D ¢ A2+ (n—10)?
=k k-1 e

Now, we deal with W2 (hf)(0).

Lemma 7.2. The following equality holds,

MW (hf)(0) =d.(x) Z d(og)(logI'(n — €+ 1) + C)
l=k,k—1

where C is a constant which does not depend on £.

Proof. For ¢ € R and Re(s) > 0, let

fc(s)=/tf—1 / e PO (Y (in+ 1) + P (—ik+ 1)) drdt.
0 —00

It can be shown that the c- family of functions f.(s) extends meromorphically over C and that
fe(s) is regular over C — {2, 2, %, ...} in the same way as the proof of Theorem 6.1. Denoting
by f/(s) the derivative of f.(s) with respect to ¢, for Re(s) > 0,

fg(s)z—zc/zs / e—’<*2+62>(¢(ix+ D)+ (=it + 1) drdt = =2cf (s + 1),
0 —00

3

which also holds over C — {%, -

..} by the meromorphic extension. In particular, f,(0)
is smooth for ¢ € R, and

=
MIW

f10)=-2 / —10:2 +C> (VA + 1)+ ¢ (—ir+1))drdt

—3 o\8

=2 /\2+62(1/f(m+1)+w(—ix+1))dx
——2']O< ! —L> (ir+1)dr=—day (1 +¢)
=72 ) GFie azie ) =—dryid+o.

From this formula, we see that f.(0) = —4mwlog I'(1 + ¢) + a for a constant a for ¢ € [0, 00).
Applying this to the formula of W)% (hf ), we obtain the expected equality. O
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Next, for W; (hf )(0) we have
Lemma 7.3. The following equality holds
301k n°
}E%(MWX (ht )(s) + Sn(k)?> =d.(x)dd, k)(log(n — k) —log(n —k + 1))

where the right-hand side is trivial if k = n.

Proof. For c € (0, 00), we put

e¢]

_ —t(24cd _ €
F(t) = / e ¢ md)\.
—0o0
By (6.12), we have
d
—F@)= —cﬁe_”z.
dt Jt
Hence, for Re(s) > 0,
o0 1 o
/ 5~ 1F(t)cz’t_——/f( _”2>dt
s
0 0
o0
Cﬁ/‘tv—%e—tc dt = \/_ —2? F(S+ 1)
s s 2
0
This implies
d.(x)d(d, k) vl
3(1.k c k—¢ 2

b=k ,k—1
x (VT +I'(1/2)s +0(s))
_ _4d.(0dd, k) 3 (_1)H<§ — 2 log(n — £) + 7wy (1/2) + O(s)>,

2w
e=k,k—1
which completes the proof. O

Combining (7.5), (7.12) and Lemmas 7.1, 7.2, and 7.3,

n—~_
_ 1 ~
det; A= ] Zane(2(—0)™ exp(5 f Pg(ik)dk)
l=k,k—1 0

X (n _5)<—1>k*‘3+1dc<x>d<d,k)p(n — 04 1)"4c(0d©@0) =dc(0d©EIC (7 13)
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where the terms (2(n — £))~*¢ disappear if £ = n. Let us remark that the order (— k=1 of
(n — £) depends on both k and ¢ and this is due to the non-invariant property of the weighted

orbital invariant.
From Theorem 2.2 of [9] or Theorem 4.14 of [10], we have

Proposition 7.4. For s € C, the following equalities hold

Z, (0%, s + KNC(s—n+k+ 1)*dc(X)d(Uk)s*dc(X)d(d,k)

= Z, (05,20 —k — )T (n — k — s+ 1)"400400 (9 — ) — 5) 700

s+k—n

x det C} (o, n — k — 5)/ det C¥ (ox, 0) ™) exp (— f Pi(iz) dz),
0

Zy(0n,s +m) (s + ])*2dc()()d(ﬂn)
=Z, (0, n —5) - T (—s + 1) 20 dln)

s
x det CY (o, —5)4" det C" (an,O)—d<“n>exp<— / 2P, (iz) dz).
0

By Proposition 7.4 and recalling

S,(£):= lim )(s+n—z)—”fdetc§(oe,s)

s——(n—~

(s —n+ 0P detCl (7, 5)) ",
£)

= (=D’ lim
s—(n—
we obtain

n—¢

Zon—t exp( / Py(in) dx)

0
= Z¢(det € (00, 0)S, ()" (2(n — ©)

de(0)d(G7)
x ((n— E)!)d”(”"("‘f)((n - 1)!) ‘

dc(x)d(d,0)

(_l)al+(’1*5*1)dc()()d(<7£) (7.14)

where we also used the fact res,—_, " (z) = (711!)'1 . Combining (7.13) and (7.14),

d -2 dc(x)d(d L
et A? = [ Zon—eZe(detCL(or, 08, (0)) "7 (2(n — £y) 720 FAOAEO
=k k—1

x (n — E)—dc(x)(d(ﬁz)ﬂ—1)k7£2d(d,k))e—2dc(x)d(0z)c(_l)otz-i-(n—f—l)dc(x)d(w)' (7.15)

Using det; Ay = det; Ao, 1—k, we have

T(Xr, x) = (det; Ag)" 1 - (det, A1) ™"~V . (det; A2) @Y . (det; A,) D", (7.16)
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From (6.14), we also have

—1 Z() Zz (_1)’1*1 (_l)n (_1)n+l Zzn_z
=) )L T,
1 43 2n—1

lim ("R, (5))

Now combining this and (7.15), (7.16) and recalling detC )‘; (o¢,0) = £1, finally we conclude
that the following equality holds up to sign,

. -1
lim (s" Ry (5)) 7 = C(Xr, x) - C@)* - S(Xr, %) - T(Xr, %) (7.17)
Here
n—1 1k n—1 .
CXr. )= [(=40 =) TV S0 =[] S DT e
k=0 k=0
and
n—1
C(d) = 1—[ 2EDIAWR) | () _ oy (=DF@d (o0 (1—k)+d(d )
k=0

Note that the terms e =24 004©@)C g are combined to be 1 by the equality

n

Y (=Dfd() =0.

£=0

8. Proof of Theorem 1.4

Throughout this section, we assume d = 2n.
As in the odd-dimensional case, we start with

M (Tre(e™'2%) = Br) = M1 (hy) + M Hy () + MUy (hy) + MWy () — M (Bp).

The Mellin transform of each term except I (hiC ) of this equality can be treated as in the odd-
dimensional case. For I, (hf ), we have

Lemma 8.1. When d = 2n, the following equality holds,

dimV, - vol(I"\ G)

k —
MIX (hf )(S) - 22(2n—1)F(n)2
A r'(s) T (s—j—1) 7 cosh™2 (1 /X)
> do)) Yy bj—— )T ¥y
% (@) ’s—j—lf(Hf) 2% !
t=k,k—1 =0 0

where the b;’s are given by p(o¢, X)) = 7274 =D I (n)~2d(oy) A tanh(rr A) Z;’;(]) bj A+ dgz)j.
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Proof. As in the derivation of (6.6), for Re(s) > 0 we obtain

o0 o
/ts—l / e—t()»2+d@2))htanh(ﬂ)t)()ﬂ+d§)jdkdt
0 —00

e (e Oos_j_zoo_t(ﬂrdz) ncosh‘%nﬁ))
=@E—-1-...-(s ])O/t O/e ¢ (—2\/; dx dt

I'(s) 7 N —(s—j—1) ncoshfz(nﬁ)
LR P EOSEET R
2
0 \/;

which, by analytic continuation, also holds for s € C. Since the term ¢(I, x, t,) in (6.7) is a
constant with respect to ¢, its Mellin transform vanishes as in (7.2). Then this completes the
proof. O

By Lemma 8.1, as also expected from Theorem 6.1, the limit of M1, (hf) as s — 0 does
not exist by itself and we need to remove the simple pole of M1, (hf) at s = 0. Lemma 8.1
immediately implies

Proposition 8.2.
lim (M1 () (s) = I'(s)ax) = dimVy, - vol(I"\ G)a(n, k)
s—

where ay is the residue of M1, (hf)(s) at s =0 and a(n, k) is a constant that is independent
of I', but depends only on G.

Following [7], we write
a~b ifa=exp(c-dimVy -vol(I'\ G))b 8.1

for a constant ¢ that is independent of I". We can proceed as in the odd-dimensional case and
obtain

do—1{

_a 1 ~
det; A~ [] Zadg—e(2(do — 0) fexp<5 / Pg(lk)dl)

t=k,k—1 0
x (do — £) DT HdGOAAR) P (g — g 4 1)~ (0@ =d:(Od@OC (g o)
where Z4,—¢ denotes the leading coefficient of the Laurent expansion of Z, (o¢, 2dy — £ + x)

atx =0asin (7.8), do = L, Pi(s) = —d.(x) P (s) + C(x, k) with the constant C(x, k) from
Uy (hf), which is determined by (4.14), (4.15). Now by Theorem 4.14 of [10],
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Proposition 8.3. For s € C, the following equality holds

Zy (o, s + R (s —do + k + 1)~ >0 =IO T (61, 5 4+ k)
=Z,(ox,2do —k —s)I"(dy — k — s + 1)~ L0dw)
x (2(dy — k) — s) " “ PO L6y 2dy — k — 5)

s+k—dy
x det C% (oy., do — k — ) det C¥ (o, 0) =4V exp(— / Pi(iz) dz)
0
where

k gAY EX)
Ty(og,s) = |:H(Fd(s —Ou(s + e+ 1)) (k_@)]
=0

Here I';y(s) is the multiple gamma function of order d introduced in [15] and E(X 1) denotes the
Euler characteristic of X .

From Proposition 8.3,

d()—f
f Py(ir) dA)

Zody—t eXP(
0

d de(x)d(d, ¢
~ Zy(det CL (0r, 0) Sy (0)) ("‘f)(z(do —0) (x)d(d. )

x I'(dy — €+ 1)dc(X)d(0£)1"(_dO 40+ 1)—dc(X)d(0[)(_1)Olz (8.3)
where

S,(0):= lim [)(s+d0—£)_b‘ detC! (ay. 9).

s——(dp—

>

The ambiguity ‘~’ in (8.3) comes from the constant term of the Laurent expansion of
Ty(og,2dy — $)Ty(og, s)~ ! at s = € and the following equality given in Proposition 4.4 of [9],

n 2n —1 n
Combining (8.2) and (8.3),

d
(det; Ag)? ~ H Zady—0Ze(det Cy (o1, 0) Sy (£)) )
t=k.k—1

x (_1)(1[ (2(d0 _ g))_2a2+dc(X)d(d’£)(F(d0 —+ l)F(—d() . 1))_dc(X)d(0'l)

x (do — £) DT F12deG0 d(d k) p=2de (0 (@0)C (8.4)
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Using det; Ay = det; Ap,_g, we have

T(Xr, x) = (det; Ag) ™" - (det; A1) - (detr Ar) ™" ... (detr Ap—) V"2
(detg ATV, (8.5)

By (8.4) and the symmetry in (8.5), all terms cancel except the term (dy — E)(’l)k%ﬂz‘if(”d(d’k)
if we plug (8.4) into (8.5). For instance, the leading terms Z, of Z, (o¢, £) combined to

(Z0Zon-1)" - (Z1 Zon-2)" - (ZoZon-1)" ... (Zn-1Zn) V" (Zy2Zp )TV

)n-Hn

AZp1Z) TV = 1. (8.6)

The combination of terms (dy — E)(_l)k_wwﬂ(x )d(d-K) results in

n—1 et _— de(x)
T(Xr,x)~ (H(do — k)OI ))) '

k=0

Recalling the definition in (8.1),

n—1 de(x)
T(Xr, x) = exp(a(G)dimV, - vol(I" \ G))( [Tedo - k)“”k"((i”ﬂl)—(z”kz))) 8.7)
k=0

where a(G) is a constant depending only on G, not on I". Now let us observe that the equality
(8.7) still holds with d.(x) = 0 if X is compact, that is,

1=T(Xr, x) =exp(a(G)dimV, - vol(I" \ G))

for any co-compact discrete group I C G. Hence it follows that the constant a(G) = 0. Finally
we conclude

n-l ko 2n—1N_ 2n—2 4o
T(Xr, x)= (H(do—k)“’ )= >>) . (8.8)

k=0
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Appendix A. Proof of Theorem 5.3
A.l. Odd-dimensional case: d =2n + 1
The case of n = 1 can be computed as in the cases n > 2. Hence we assume that n > 2 in the
following proof. The highest weights 1, ,u,ﬂf of the representations oy, a,f of M =S0(2n) C
K =SO(2n 4 1) are given by
mwr=er+es+---+ey1 O<k<n—1), pE=ertez+---+ey et
Recalling
pm=m—1Der+(n—2)ez3+---+ ey,
we have
Aoy =1Ael + g + pm
=ileit+nea+m—1Des+---+m—k+Dext1+m—k— Degya---+ep,

bt =01+ 1y + oy
=iiei+nex+m—1ez+---+2e, £eyt1.

First we consider I7(sq Ay ) for & € X4, which are given by e] — ey, e; +ep for2 <€ <n+1.
Then we have

S(ey—ep) (TAe1 + i + pm)
ieg+ney+---+m—L+2)eg+ -+ (n—k+ 1Degs

+(n—k—Degyr+--+en if2<e<k+1,
=1 ireg+ner+---+m—k+ ekt
+mn—k—Degq2+---+m—L+Der+---+en ifk+2<£<n,

irepy1+nex+---+m—k+Dexpr1+mn—k—Degyr+---+e, ifl=n+1,

s(elfe[)(i)‘-gl + /ny::: + IOM)
_ ireg+nex+---+m—L€+2e1+---+2e, Le,q1 if2<L<n,
- irepy1 +nex+---+2e, e ifl=n+1,
S(er+ep) (EAel + g + o)
—idegt+ney+---—m—L+2e1+---+m—k+ Degs

+(n—k—1Dexqr+ - +e, f2<e<k+1,
) —ikejtnex+ -+ —k+ Degy
- +m—k—Degyo+--—m—L+Der+---+ey ifk+2<el<n,

—ilept1 +ner+ -+ (m—k+ ey
+(n—k—Dexgr+--+en if¢=n+1,
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S(e1+e[)(i)\'el + My::: + IOM)

. —ilegt+ney+---—m—L+2e1+---+2e, ey if2<L<n,
- —ilept1 +nex+---+2e, Fep ifé=n+1.

The above computations give us the following equalities,

I (S(eyep) (ihe1 + px + pm))
=Cl (M +n?)- P+ @ =1 P+ =+ (=A==l D).
x (22— (—k+D?) (=22 —=(—k—1D?)-- (=2 if2<L<k+1,
H(S(elzteg)(i)\el + uk + pM))
=Ci(A*+n?)- (AP +m =D AP+ @ —k+D?) - AP+ m—k—1D?).
x (A+n—0+2)?7) (=22 =(m—0%)-(=2%) ifk+2<e<n+1,
T (S(e,+ep) (i2e1 + 1y + om))
=C (M +n?) P+ @ =D+ — 43 (=A==l D)
x (=22 =2%) (=2 —1)

where

ck I (b* —a?)

0<a<b<n
a,b#m—k),(n—0+1)

for 0 <k <n,2< €< n+ 1. By the above computation, we can put

Py o= T (e, e, (ide1 + pk + o))
P!y =11 (seyxe, (iher + 1ty + par)).

which are degree 2(n — 1) even polynomials of A.
Second, we compute the part (¥ (1 + Ay (Hy)) + ¥ (1 — Ay (Hy)). To do so, note that

ir—m—L+2) ifa=e —ep, 2<L<k+1,
ir—n—L+1) fa=e —ep, k+2<L<n,
i ifoa=e; —eyt1,
ir+(n—L+42) fa=e +tep, 2<L<k+1,
ir+(n—L+1) ifa=ei+e, k+2<0<n,
ix ifa=e; +ey41,

(irer + px + pym)(Hy) =

iN—(n—L0+2) fa=e —ep, 2< <0,
irF1 ifo=e; —eyt1,
i+ (n—L4+2) ifa=el+ep, 2< <0,
irt1 ifoa=e;+ep41.

(irer + wy + pu ) (Ha) =
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From these equalities, we can see that (Y (1 + (iAer + wur + pm)(Hy)),
W(1 = (iher + pux + py) (Ho)) is given by

Y(ir—n+L€—-1), y(—ir+n—L€+3) fora=e; —ep, 2<L<kH1,

Y(ir—n+2L), y(—ir+n—L+4+2) foroa =e; —ep, k+2 <L <n,
Y(ir+1), y(—ir+1) fora =e1 —ey41,
Y(ir+n—L43), y(—ir—n+L€—1) fora=e+ep, <LLkH+1,
Y(ir+n—L+2), y(—ik—n+1L) foroa =e; +ep, k+2< L <n,
Y(ir+1), y(—ir+1) fora =e1 + e€,41,

and (Y (14 (ixer + wy + pa) (Ho)), ¥ (1 — (irer + i + pm) (Hy)) is given by

Y(ir—n+L—1), y(—ir+n—£€+3) fora=e —ep, 2<L<n,

YA, y(—ir+2) fora =e; —ey41, 0 =04,
Y(Ir+2), Y(—ik) foro =e —e,41, 0 =0_,
Y(ir+n—£€43), Yy(—ih—n+£€—1) fora=e+e, 2<€<n,
Y(IA—+2), y(—ik) fora =e1 +epy1, 0 =04,
YA, y(—ir+2) foroa =e; +ey4+1, 0 =0_.
Putting
a(id) =y (r—n)+ ¥ (—id—n)+ YA+ 1)+ (—ir+1),
we have

YGh—n+L—1D)+y(—ik—n+l—1)+yGir+n—L+3)+¥(—ik+n—L+3)

2m—L4+1) —2n—L€+3) —2n
R+l T2 D2 A2 m—te+3)2 T a2
Y —n—+0) + Y (—ih—n+0+vir+n—C+2) +y(—ir+n—E+2)
2(n —0) —2n—L€+2) —2n
PR R vy v By RS PRI
QY Gih+ 1) + Y (—ih+ 1)) = W (i) + e oo 2
A2 +1 A2 4n?
V@A +2) + Y (—id+2) + YR + Y (—id) =30 + —— 22 +-- +——2n.
A2 422 22 +n?

Now we assume that 0 < k < n — 1. Using the formula ZanA I (54 (Ag,)) = 211 (Ag, ) (se€

the last line in [13, p. 95]) and the above formulas to decompose

H oo
D> ,;S(pM;‘) (W (14 oy (Ho)) 0 (1= oy (Ho))
aeXy
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into

d(ox) W, (i) = d((27k)

(VGEr—n)+ Y (=i —n)+ ¥ r+1) + Y (—ir+ 1)

(where we use the Weyl’s dimension formula for d(oy)) and

1 k+1 n+1
m(é&wwn,e(x) + ) Pk,@(mn,z(k))

=k+2
where

2 2m—€+1) —2(n — €+ 3) —2n

A= — —_,
Ot = et a2 T R i—t+3) 22+ n2
2(n—£) —2(n—L+2) —2n

R, /()= — +... e ——
nt() A2+1+ +A2+(n—ﬁ)2 M+ (n—L+2)2 +A2+n2

By the definitions of P;:l,e()”)’ Qne(X) and Ry ¢(X), we can see that P,(”’E()\)Q,,,g()u), (or

P,Z (A Ry ¢ (1)) is the sum of even polynomials of degree 2n — 4, which is the polynomial Pkd Q)
in Theorem 5.3, and

n. 1 (n—k) n n
R T o) 32+ 0 - k)2< 2 dht D r“)

20k k+2<e<n+1

where

k+€+1 2 2

g, =Dt T (P-4,
0<a<b<n
a,b#n—{+42

no_ k++1 2 2

iy =(=1) [[ @*-4.
0<a<b<n
a,b#n—{+1

By the Weyl’s multiplicity formula for d (0% ), we have

vk . k—1 . 2n -
RZ — M ( Z(_l)]d(ffj) + Z (_1)]+1d(o-j)>

2 — 2
A+ (n—k) = Fars?

where we also use

n 2n
> (=Didop) =) (=) d(o)).

j=0 j=n
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By an essentially same computation, we decompose

Ly ) (4 (1 (010 + 0 (1 = e )

2 o5, Hlom)
into
d(;k)llln(i)») d(G:t)(I//()»—n)+1//( Do m) U D U —ih D)
and
ntl
207 (ont) Z; Py () Qe (V).

By the definitions of P”Z(A) and Q, ¢(1), we can see that P [(A)Qn ¢(X) is an even polynomial
of degree 2n — 4, which we can denote by P,f’ ).

A.2. Even-dimensional case: d =2(n + 1)

For convenience of the computation, we let n = ”—l — 1 so that d =2(n + 1) throughout this
subsection. The case of n = 0 can be computed as 1r1 the cases n > 1. Hence we assume that
n > 1 in the following proof.

With respect to the inner product on t7, induced from (-,-) in (2.1), we choose an orthonormal
basis {e;} of 7. such that e; € af.. Then we have

Egz{ei(léién—i—l),e,-—ej(1§1<]<n~|—1) ei+e; (1<i<j< n+1)}
<

Ta={er,er—ej(U<j<n+1), e1+e; (1<j<n+D}

Let us write A, in terms of {e;}. The highest weights 1 of the representations oy of M =
SO@2n+1) C K =SO2(n + 1)) are given by

up=ex+tes+---+er1 (0<k<n).

Recalling

1 3 1
M =\n= 5 e+ n-s €3+"'+§€n+1,

we have

Aoy = iher + g + pm

1 1
=i\ Z S
1Ae] ~|—(n+2>ez+<n 2>€3+

3 1 1
+ <n—k+§)ek+1 + (n—k— §>€k+2"'+§€n+l.
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First we consider I1(s4As) for ¢ € X4, which are given by e, e; — e, e1 + e for 2 < £ <
n + 1. Then we have

1 1
Se (iAey + i + py) = —ider + (n + §>ez + (n - 5)63 +--

3 1 1
+<n—k+§)€k+1 +<n—k—§>ek+2-~-+§en+1,

S(ey—ep) (IAe1 + ik + pm)
ireg +(n+Dext -+ (n—L+3er +-o 4 (1 —k+ 3exs

B +(n—k—Dersa+ -+ Fent if2<e<k+1,
ireg +(n+er+-+(n—k+ex
+(n—k—Dexya -+ =L+ e+ + Fent ifk+2<e<n+1,

S(er+ep) (EAel + g + pymr)
—ireg+(n+Der o —(m—LC+3er +-
+(n—k+Dexy1 +n—k—Dewo+- -+ ey f2<E<k+1,
—ireg+ (n+Der+ -+ (n—k+ et
t—k—Depppt+ - —m—t+Der+- e ifkF2<e<n+ 1.

Recall that Xy consists of e; for 2<i <n+1,¢; ¢ for2<i < j <n+ 1 and the co-root
H, of « satisfies «(Hy) = 2. By the Weyl’s dimension formula, for « = ey,

I (s, (ixer + px + py)) = d (o) T (pum)-

For the other cases, it is a polynomial of A as follows:

TT(S(ey o) (iMer + pk + par))

:Céc_l(q:i)v)()»z—i-<n+%>2>...<kz+<n—ﬂ+%)2>.(—A2—<n—£+%>2>...
o) ()
) e

TT(S(eyep) (ider + pk + par))

:Céf(:Fi)‘)()»2+<n+%>2>...<A2+<n—k+%>2>.<Az+<n—k—%>2>...
el e
() s
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where
ck=2o" H b+l 2— a+l 2 . H c+l
¢ 2 2 2
0<a<b<sn 0<cen
a,bg¢{n—k,n—1} c¢{n—k,n—t}

for 0 <k <n,2< ¢ <n+ 1. By the above computation, we can put

Pl (1) := T (Sey e, (iher + ik + par))

which is degree 2n — 3 odd polynomial of A.
Second we compute the part (Y (1 + Ay (Hy)) + ¥ (1 — Ay (Hy)) for « € X4. For this,

20\ if o =2eq,
—(n—0+3) fa=e —ep, 2<E<k+1,
(ire1 + e+ pa)(He) = L ik —(n—L+3) ifa=e —en k+2<t<n+1,
irt(n—LC+3) ifa=e +ep, 2<L<k+1,
it (n—L+3) ifa=ei+e, k+2<L<n+1.

From this, we can see that (Y (1 + (ire; + ur + ppm)(Hy)), v (1 — (irer + ux + py)(Hy)) is
given by

YQRil+ 1), y(=2ir+1) for o =2ey,
7
1ﬂ<tk—n+ﬂ——) (—lk+n—€+§) fora=e; —ep, 2<E<k+1,
. 1 5
W 1A—n+£—2 , ¥ —l)»+n—£+§ fora=e; —ep, k+2<L<n+1,
. 7
w<lk+n—£+2>,1//< —n—l—ﬂ——) fora =e; +ep, 2<l<k+1,

1
w<ik+n—£+2>, W —ik—n—i—Z—E) fora=e| tep, k+2<l<n+1.

For the sum over @ € X4 in (5.5), we first consider the term with « = e;. By the results
obtained above,

T (e o)
I (pm)
=d (o) (Y Q2ir+ 1)+ Y (=2ir+1))

_ d(ox)
T2

/3( He)) ———= (¥ (1 + Ao (He))) + ¥ (1 = Ao (He,))))

(w(m + %) + w(-m + %) + YA+ D)+ P (—ir+ 1) +410g2>
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_d(oy)
2

(w<ix—n— %) +w(—i/\—n— %) +Y@r+ 1) +Y(—ir+1)

-2-1 —2(n+ %)

+ =+ 7+410g2) (A.1)
W+ (3)? W2+ (n+ 52

by the properties of the digamma function v (z). Now we take a sum over e + ¢y, e; — ey in (5.5).
For2<{<k+1,

1 I (s¢Ao)
5 Hy)———— (¥ (1 + 2o (Ho)) + ¥ (1 — Ao (Ho
7, X P TS (1440 () + ¥ (1= 1)
—EM( ('k_ _|_g_§ + <_’)\+ —f—i-z
PRI A Y A G
28 ¢ l i A 1 3
_¢<l +n— +§>—w<—l —n+ _E>>
_lﬂ(sel—eu\a)< 4r 4i N 2i ) A2)
S 2 o) \R2+ (50 R+ Rtm—t+32)
and similarly for k +2 <€ <n+1,
1 I (s¢Ao)
> Hy)——— (¥ (1 + Ao (Ho)) + ¥ (1 — Ao (Hy
7, X P TS V(1420 0) 4 (1 =k 1)
_ln(selez)‘(f)( 4id o 4ix . 2 > a3
S 2 o) AR+ () -+ D2 2t m-e+)?)

From the expression of IT(s¢,—¢,As), We can see that the term in (A.2), (A.3) consists of a
polynomial of degree 2n —2 if d = 2(n+ 1) > 4 and some rational functions whose denominators
are A2+ (n —k+ 52 22+ (n — £+ 3)? when 2 < £ <k + 1 and A2 + (n — £ + 3)? when
k 42 < € < n+ 1. The numerators of these rational functions are given by

it =(—1)"“‘12(n—k+—>d(mz) for2<e<k+1,
I(oM) |r=in—k+1) 2
Pl S
in Kt =<n_£—|——>d(ak) for2<<e€<k+1,
I(oM) |r=in—e+3) 2
Py 3
it =<n—e+—>d(ok) fork+2<é<n+1,
I (om) [r=in—e+3) 2

so that the sum of these rational functions over 2 < £ <n +11is

(A4)

(n—k+3) n—t+3)
(—DF2 Z (=D%d(oe_1) 5 2 = +d (o) Z - 2 .
ISk MAh—k+3) <t M T —E+3)
0#k+1



J. Park / Journal of Functional Analysis 257 (2009) 1713-1758 1757

Finally taking the terms in (A.1) and (A.4) with a polynomial denoted by Py (%), we obtain

d(oy) . 1 . 1 . .
Q06 1) =—— (w(m —n— 5) +1//<—1A —n— 5) YA+ 1)+ (—ir+ 1))
(—l)k(n —k+ %) k—1 ' 2n+1 .
(—D/d(oj) + (=7t (o)) ) = Pe(h).
A2+ (n—k+ 3)? jZ_(:) " j—Xk—:H " k
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