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Abstract

In this paper we derive a relationship of the leading coefficient of the Laurent expansion of the Ruelle zeta
function at s = 0 and the analytic torsion for hyperbolic manifolds with cusps. Here, the analytic torsion is
defined by a certain regularized trace following Melrose [R.B. Melrose, The Atiyah–Patodi–Singer Index
Theorem, Res. Notes Math., vol. 4, A.K. Peters, Ltd., Wellesley, MA, 1993]. This extends the result of Fried,
which was proved for the compact case in [D. Fried, Analytic torsion and closed geodesics on hyperbolic
manifolds, Invent. Math. 84 (3) (1986) 523–540], to a noncompact case.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we derive an equality between the leading coefficient of the Laurent expansion
of the Ruelle zeta function at s = 0 and the analytic torsion for hyperbolic manifolds with cusps.
This extends the result of Fried, which was proved for the compact case in [6], to a noncompact
case. Here the analytic torsion for manifolds with cusps is defined by a certain regularized trace
following the idea of the b-trace of Melrose [16].

This paper can be considered as a continuation of our previous study [21] of the relationship
between a special value of the odd type Selberg zeta function and the eta invariant which extends
the result of Millson [18] to hyperbolic manifolds with cusps.
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Let XΓ denote a d-dimensional hyperbolic manifold with cusps, which is given by

XΓ = Γ \ SO0(d,1)/SO(d)

where Γ is a co-finite discrete subgroup in SO0(d,1). We assume that XΓ is equipped with the
constant negative curvature −1. We also assume that Γ is neat (hence torsion free), that is, the
group generated by the eigenvalues of Γ contains no root of unity. A consequence of this is

ΓP := Γ ∩ P = Γ ∩ N(P ) for P ∈ PΓ (1.1)

where N(P ) is the nilpotent part of P and PΓ = {P1, . . . ,Pκ } denotes a complete set of Γ -
conjugacy classes of Γ -cuspidal subgroups of G.

The Ruelle zeta function Rχ(s) over XΓ is now defined by

Rχ(s) :=
∏

γ∈PΓhyp

det
(
Id − χ(γ )e−s l(Cγ )

)−1

for Re(s) > (d − 1). Here PΓhyp denotes the set of Γ -conjugacy classes of the primitive hyper-
bolic elements in Γ , the determinant denoted by “det” is taken over the representation space Vχ

of a unitary representation χ of Γ , and l(Cγ ) denotes the length of the closed geodesic deter-
mined by a hyperbolic element γ .

Let us recall some results about Rχ(s) in [10] when d = 2n+1. First, by Theorem 1.1 of [10],
the Ruelle zeta function Rχ(s) has a meromorphic extension to C. Second, let N0 be the order
of the singularity of Rχ(s) at s = 0 such that

R∗
χ (0) := lim

s→0
sN0Rχ(s) ∈ C − {0,∞}.

By Theorem 1.2 of [10], we have that if d = 2n + 1,

N0 = 2
n∑

k=0

(−1)k(n + 1 − k)βk +
n−1∑
k=0

(−1)k+1bk

(
2n

k

)
+ dc(χ)(−1)n

(
2n − 2

n − 1

)
(1.2)

where βk := dim kerL2(�k) with the Hodge Laplacian �k acting on the space of differential
k-forms twisted by χ over XΓ , bk denotes the order of the singularity of the determinant of a
certain scattering operator Ck

χ(σk, s) at s = d−1
2 − k, and dc(χ) is the sum of the dimensions of

the maximal subspaces of Vχ ’s where χ |Γ ∩P acts trivially for P ∈ PΓ (see (3.2)).
From (1.2), we can see that if d = 2n + 1 the behavior of the Ruelle zeta function Rχ(s) at

s = 0 is related to the spectral data of the Hodge Laplacians �k’s, and it is a natural question
whether the leading coefficient R∗

χ (0) may have a relationship with another spectral data. In [6],
it was proved that this is equal to the analytic torsion (up to a constant) for odd-dimensional
compact hyperbolic manifold XΓ . Since we do not have an analytic torsion for our noncompact
case, we need to introduce an analytic torsion T (XΓ ,χ) which is linked to the leading coefficient
R∗

χ (0). To do this, first of all we define the spectral zeta function of the Hodge Laplacian �k

using a certain regularized trace of the heat operator of �k . In Theorem 6.1 we show that this
spectral zeta function of �k is regular at s = 0. Then we can define the regularized determinants
of �k’s and the analytic torsion T (XΓ ,χ) in the usual way as in the compact case. Actually this
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approach was suggested by Melrose in [16] and the regularized trace in this paper is essentially
the same as the b-trace of Melrose. Following this idea, Hassell defined b-analytic torsion for
certain noncompact manifolds in [12]. We refer to Section 6 for the precise definitions of the
spectral zeta function of �k and T (XΓ ,χ).

The following theorem states a relationship of R∗
χ (0) with the analytic torsion T (XΓ ,χ)

where some defect terms are given from the cusps (geometrically) and the scattering data of �k’s
(analytically).

Theorem 1.1. For a (2n + 1)-dimensional hyperbolic manifold XΓ with cusps, the following
equality holds up to sign,

R∗
χ (0)−1 = C(XΓ ,χ) · C(d)dc(χ) · S(XΓ ,χ) · T (XΓ ,χ). (1.3)

Here

C(XΓ ,χ) :=
n−1∏
k=0

(−4(n − k)2)(−1)kαk , C(d) :=
n−1∏
k=0

2(−1)k+1e1 · (n − k)(−1)ke2

where αk := βk − βk−1 + βk−2 − · · · ± β0, e1 = (2n
k

) − (2n−1
k

)
, e2 = (2n − 2k + 1)

(2n
k

) − (2n−1
k

)
,

S(XΓ ,χ) :=
n−1∏
k=0

Sχ(k)(−1)k+1(2n
k ) with Sχ(k) = lim

s→−(n−k)
(s + n − k)−bk detCk

χ(σk, s).

This result was announced in [22].

Remark 1.2. Let us observe that C(d) depends only on the dimension d , not on Γ although
C(XΓ ,χ), S(XΓ ,χ) depend on Γ sensitively. When XΓ is compact, the equality (1.3) is re-
duced to the formula of Fried in [6]. Actually we can see that the same formula holds under a
more general condition that dc(χ) = 0 even if XΓ may have cusps. In fact, if dc(χ) = 0, then N0
is given only by the βk’s in (1.2) and C(d)dc(χ) = S(XΓ ,χ) = 1. Moreover the sign ambiguity
in Theorem 1.1 disappears since this comes from the scattering operators Ck

χ(σk, s).

Remark 1.3. In [26,27], Sugiyama studied the geometric analogues of the Iwasawa conjecture
for 3-dimensional hyperbolic manifolds. He proved that the Laurent expansion of the Ruelle zeta
function Rχ(s) at s = 0 satisfies several analogues of the Iwasawa conjecture in the algebraic
number theory under the condition dc(χ) = 0. In particular, in [27] it is proved that R∗

χ (0) is
essentially given by the Reidemeister torsion for (XΓ ,χ) if dc(χ) = 0. Our Theorem 1.1 is cru-
cially used in its proof. It seems to be interesting to understand the equality (1.3) in Theorem 1.1
for general cases in the view point of the geometric analogues of the Iwasawa conjecture.

Comparing the formulae of the order of the singularity N0 for even- and odd-dimensional
cases (see (1.2) and Theorem 1.2 of [10]), one can expect that there is less relationship of R∗

χ (0)

with the spectral data in the even-dimensional case. Actually because of a certain symmetry
(see (8.6)) we can not link R∗

χ (0) with T (XΓ ,χ) in the even-dimensional case. It is also known
that the analytic torsion T (XΓ ,χ) is trivial for even-dimensional compact manifold. However, it
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turned out that this is not true anymore for noncompact hyperbolic manifold XΓ with cusps, and
that T (XΓ ,χ) has an following explicit expression.

Theorem 1.4. For a 2n-dimensional hyperbolic manifold XΓ with cusps, the following equality
holds

T (XΓ ,χ) =
(

n−1∏
k=0

(n − 1/2 − k)(−1)kn((2n−1
k+1 )−(2n−2

k ))

)dc(χ)

. (1.4)

Remark 1.5. The right-hand side of (1.4) originates from the non-invariant part of the weighted
unipotent orbital integral on the geometric side of the Selberg trace formula. Geometrically this is
the defect for the Hodge theorem of the de Rham complex for hyperbolic manifolds with cusps.
For the odd-dimensional case, the corresponding term is also contained in the factor C(d) in
Theorem 1.1.

Remark 1.6. For the case of d = 2n, we can also obtain an expression of R∗
χ (0) in terms of

similar factors on the right-hand side of (1.3) except T (XΓ ,χ). This easily follows from the
functional equation of Rχ(s) presented in Theorem 1.1 of [10]. (The simplest case of d = 2 was
also mentioned on p. 162 in [5].)

Now let us explain the structure of this paper. In Section 2, we review the basics of harmonic
analysis over hyperbolic spaces to fix notations and normalizations used in this paper. In Sec-
tion 3, we study the spectral side of the Selberg trace formula. This will explain the motivation
of the regularized trace that is used to define the analytic torsion for hyperbolic manifolds with
cusps. In Section 4, we explain the Selberg trace formula for the nontrivial homogeneous vector
bundles over hyperbolic manifolds with cusps. In Section 5, we completely compute the contri-
bution of the weighted orbital integrals for our case applying the result in [13]. In Section 6, we
define the spectral zeta functions of the Hodge Laplacians using the regularized trace following
Melrose [16] and show that they have meromorphic extensions over C. This enables us to define
the regularized determinant and analytic torsion. In Sections 7 and 8, we prove Theorems 1.1
and 1.4 combining all the results proved in the previous sections. In Appendix A, we perform an
algebraic computation which gives the proof of Theorem 5.3.

2. Harmonic analysis over real hyperbolic space

2.1. Algebraic structures

The d-dimensional real hyperbolic space is the manifold

Hd(R) = {
x ∈ R

d+1
∣∣ x2

1 + x2
2 + · · · + x2

d − x2
d+1 = −1, xd+1 > 0

}
equipped with the metric of curvature −1. The orientation preserving isometries of Hd(R) form
the group G = SO0(d,1) which is the identity component of SO(d,1). The isotropy subgroup
K of the base point (0, . . . ,0,1) is isomorphic to SO(d). Hence the real hyperbolic space Hd(R)

can be identified with the symmetric space G/K . We denote the Lie algebras of G, K by
g = so(d,1), k ∼= so(d) respectively. The Cartan involution θ on g gives us the decomposition
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g = k ⊕ p where k,p are the 1,−1 eigenspaces of θ , respectively. The subspace p can be identi-
fied with the tangent space To(G/K) ∼= g/k at o = eK ∈ G/K . The invariant metric of curvature
−1 over Hd(R) corresponds to the normalized Cartan–Killing form

〈X,Y 〉 := − 1

2(d − 1)
C(X, θY ) (2.1)

where the Killing form is defined by C(X,Y ) = Tr(adX ◦ adY) for X,Y ∈ g.
Let a be a fixed maximal abelian subspace of p. Then the dimension of a is one. Let M ∼=

SO(d − 1) be the centralizer of A = exp(a) in K with Lie algebra m. (When d = 2, M ∼= Z2.)
Let TM be a Cartan subgroup in M so that T = TM · A is a Cartan subgroup of G. Let ΣM be
the system of the positive roots for (mC, tmC). We choose the system ΣA of positive roots of
(gC, tC) which do not vanish on aC so that ΣA is compatible with ΣM . Then the union of ΣM

with ΣA gives the system of positive roots for (gC, tC), which is denoted by ΣG. With respect
to the inner product on t∗

C
induced from 〈·,·〉 in (2.1), we choose an orthonormal basis {ei} of t∗

C

such that e1 ∈ a∗
C

. Then we have:

(1) When d = 2n + 1,

ΣG = {
ei + ej (1 � i < j � n + 1), ei − ej (1 � i < j � n + 1)

}
,

ΣA = {
e1 + ej (1 < j � n + 1), e1 − ej (1 < j � n + 1)

}
.

(2) When d = 2n,

ΣG = {
ei (1 � i � n), ei − ej (1 � i < j � n), ei + ej (1 � i < j � n)

}
,

ΣA = {
e1, e1 − ej (1 < j � n), e1 + ej (1 < j � n)

}
.

We put β = e1, which is the positive restricted root of (g,a). Let ρ denote the half sum of the
positive roots of (g,a), that is, ρ = (d−1)

2 β . Later on, we shall use the identification

a∗
C

∼= C by λβ −→ λ. (2.2)

Let n be the positive root space of β and N = exp(n) ⊂ G. The Iwasawa decomposition is given
by G = KAN. From now on we fix the following Haar measure on G,

dg = a2ρdk da dn = a−2ρdnda dk (2.3)

where g = kan is the Iwasawa decomposition and a2ρ = exp(2ρ(loga)). Here dk is the Haar
measure over K with

∫
K

dk = 1, da is the Euclidean Lebesgue measure on A given by the
identification A ∼= R via at = exp(tH) with H ∈ a, β(H) = 1, and dn is the Euclidean Lebesgue
measure on N induced by the normalized Cartan–Killing form 〈·,·〉 given in (2.1).
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2.2. Homogeneous vector bundle

Let us recall the homogeneous vector bundle over the symmetric space Hd(R) ∼= G/K . If τ is
a unitary finite-dimensional representation of K , then the sections of the associated homogeneous
vector bundle G ×τ Vτ over G/K consist of the map f : G → Vτ with the condition

f (gk) = τ(k)−1f (g) for g ∈ G, k ∈ K. (2.4)

Equivalently, the sections of G ×τ Vτ are equivalence classes of the pairs (g, v) under
(gk, v) ∼ (g, τ (k)v). For such a section f of G×τ Vτ , there is a G-action defined by g0 ·f (g) =
g0f (g−1

0 g). For instance, the space of k-forms over G/K is given by this construction: Choose
an orthonormal basis for p∗. This basis determines left invariant 1-forms ω1, . . . ,ωd on G.
A complex-valued k-form w on G/K pulls back to a k-form ω′ on G given by

ω′ =
∑

fi1,...,ikωi1 ∧ . . .ωik .

The component functions (fi1,...,ik ) give a map f : G → ∧k
C

d satisfying the condition (2.4)
with τ = τk acting on Vτk

∼= ∧k
C

d . All the representations τk are irreducible representations
of K except when d = 2n and k = n. In this case, τn decomposes into two irreducible represen-

tations τ+
n , τ−

n acting on
∧n

+ C
2n,

∧n
− C

2n, respectively. Here
∧n

± C
2n denotes the ± exp( n2

2 πi)-
eigenspace of the Hodge operator ∗ on

∧n
C

2n. Let us recall that the highest weight μk of the
representation τk is given by

μk = e2 + e3 + · · · + ek+1 for 1 � k � n, d = 2n + 1,

μk = e2 + e3 + · · · + ek+1 for 1 � k � n − 1, d = 2n,

μ±
n = e2 + e3 + · · · + en ± en+1 for d = 2n.

Let us denote the irreducible fundamental representations of M = SO(d − 1) by σk’s if
d = 2n, and σk’s with k �= n, σ±

n if d = 2n + 1. These satisfy the following branching laws:

(1) For k �= n with d = 2n or d = 2n + 1,

[τk|M : σ�] = 1 if and only if σ� = σk or σ� = σk−1.

(2) For k = n and d = 2n,

[
τ±
n |M : σ�

] = 1 if and only if σ� = σn = σn−1.

(3) For k = n and d = 2n + 1,

[τn|M : σ�] = 1 if and only if σ� = σn−1 or σ� = σ±
n .
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2.3. Heat kernel of the Hodge Laplacian

The Hodge Laplacian �k on the space of k-forms for the curvature −1 metric is an invariant
differential operator constructed as follows: We choose a basis Ei of k and a basis Ej of p that
are orthonormal with respect to the normalized Cartan–Killing form 〈·,·〉. Then

Ω := −
∑

E2
i +

∑
E2

j (2.5)

is the normalized Casimir element in the center of the universal enveloping algebra of g. For
a representation τ of K , let

Qτ =
∫
K

R(k) ⊗ τ(k) dk

be the projection from L2(G) ⊗ Vτ to L2(G, τ) ∼= (L2(G) ⊗ Vτ )
K where R denotes the right

regular representation of G on L2(G). Then the Hodge Laplacian �k is given by

�k = Qτk

(
R(−Ω) ⊗ IdVτk

)
Qτk

. (2.6)

That is, the Hodge Laplacian �k is the restriction to the τk-invariant part of the corresponding
invariant differential operator to −Ω .

The subgroup P0 := NAM is a minimal parabolic subgroup of G. Given (σ,Hσ ) ∈ M̂ and
λ ∈ a∗

C
, the following action (

1 ⊗ eiλ ⊗ σ
)
(nam) = aiλσ (m)

defines a representation of P0 on Hσ where aiλ denotes exp(iλ(loga)). Then the principal series
representation πσ,λ := IndG

P0
(1 ⊗ eiλ ⊗ σ) of G acts on the space

Hσ,λ := {
f : G → Hσ

∣∣ f (namx) = a(iλ+ρ)σ (m)f (x), f |K ∈ L2(K)
}

by the right translation πσ,λ(g)f (x) = f (xg). The following proposition whose proof is similar
to Lemma 1 of [6] gives the action of �k over Hσ�,λ if [τk|M : σ�] �= 0.

Proposition 2.1. If [τk|M : σ�] �= 0, the Hodge Laplacian �k acts on Hσ�,λ by λ2 + ( d−1
2 − �)2

where σn means σ±
n if d = 2n + 1.

To deal with the heat operator e−t�k , we follow the discussion in Section 2 of [2] or Section 3
of [19]. Let us denote by ΩK = −∑

E2
i the normalized Casimir operator of K . Recalling (2.5),

let �G denote the corresponding left invariant Laplace operator over G; that is,

�G = −Ω + 2ΩK = −
∑

E2
i −

∑
E2

j . (2.7)

Using the following well-known formula (for instance, see (A.10) of [1])

τk(ΩK) = 〈μk + ρK,μk + ρK 〉 − 〈ρK,ρK〉
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where ρK denotes the half sum of the positive roots of K = SO(d), one can show that

τk(ΩK) = λkIdVτk
with λk = (d − k)k.

(This formula is even true for τn with d = 2n.) By (2.6) and (2.7),

�k = Qτk
(�G ⊗ IdVτk

)Qτk
− 2λk IdVτk

.

Now let e−t�G denote the heat semi-group operator given by a smooth kernel Pt ,

e−t�Gf (g1) =
∫
G

Pt

(
g−1

2 g1
)
f (g2) dg2, for f ∈ L2(G), g1 ∈ G.

Hence, the heat semi-group operator of �k satisfies

e−t�k = e2λkt · Qτk

(
e−t�G ⊗ IdVτk

)
Qτk

, (2.8)

which implies

e−t�k
(
g−1

2 g1
) = e2λkt ·

∫
K×K

τk(k2)Pt

(
k1g

−1
2 g1k2

)
τk(k1) dk1 dk2.

Therefore, the kernel e−t�k (g1, g2) := e−t�k (g−1
2 g1) satisfies the following covariance relation

e−t�k (g1k1, g2k2) = τk(k1)
−1e−t�k (g1, g2)τk(k2) for k1, k2 ∈ K. (2.9)

For a fixed t > 0, by Lemma 2.3 in [2], e−t�G belongs to the Harish–Chandra Lp-Schwartz
space Cp(G) for any p > 0. Here Cp(G) is the space of all functions f ∈ C∞(G) such that

sup
g∈G

(
1 + σ(g)

)m
Ψ (g)

− 2
p
∣∣D1D2f (g)

∣∣ < ∞ for any m � 0,D1,D2

where σ(g) is the geodesic distance between the cosets eK and gK in G/K ,

Ψ (g) =
∫
K

e−ρ(H(gk)) dk

for the Iwasawa decomposition gk = K(gk) exp(H(gk))N(gk), and D1,D2 denote the right,
left invariant differential operators, respectively. Let us remark that Cp(G) ⊆ Cp′

(G) if p � p′
(see [8, p. 4]). Now we can conclude

Proposition 2.2. For any t > 0, the heat kernel e−t�k belongs to (Cp(G) ⊗ End(Vτk
))K×K for

any p > 0 and e−t�k satisfies the covariance relation in (2.9).
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Now let hk
t := tr(e−t�k ) where tr is given over Vτk

. Then hk
t belongs to Cp(G) for p > 0 by

Proposition 2.2. Hence one can define

Θσ,λ

(
hk

t

) = Trπσ,λ

(
hk

t

) = Tr
∫
G

hk
t (g)πσ,λ(g) dg.

For a given unitary representation π of G, we define its matrix block of π corresponding to
Pτ ∈ HomK(π |K, τ) by

Φπ
τ (g) := Pτπ

(
g−1)P ∗

τ for g ∈ G.

We note that Φπ
τ (g) ∈ End(Vτ ) for a fixed g ∈ G and

Φπ
τ (k1gk2) = τ(k2)

−1Φπ
τ (g)τ(k1)

−1 for k1, k2 ∈ K.

This is an τ -spherical function on G on which the normalized Casimir operator Ω in (2.5) acts
by its infinitesimal character. We refer to Section VIII 4–6 in [14] for more details of these facts.
Hence, by Proposition 2.1, for τ = τk,π = πσ�,λ we have

∫
G

e−t�k
(
g−1

2 g1
)
Φπ

τ (g2) dg2 = exp

(
−t

(
λ2 +

(
(d − 1)

2
− �

)2))
Φπ

τ (g1) (2.10)

if [τk|M : σ�] �= 0 and both sides of (2.10) vanish if [τk|M : σ�] = 0. Taking the trace over Vτ and
putting g1 = e, we get

dimVτ

∫
G

hk
t

(
g−1

2

)
Φ̃π

τ (g2) dg2 = exp

(
−t

(
λ2 +

(
(d − 1)

2
− �

)2))
Φ̃π

τ (e) (2.11)

by the orthogonality relations for the matrix elements of τ where Φ̃π
τ := trΦπ

τ . On the other
hand,

Trπ
(
hk

t

) =
∫
G

hk
t

(
g−1)Φ̃π

τ (g) dg for π = πσ,λ. (2.12)

Comparing (2.11) and (2.12) and noting Φ̃π
τ (e) = dimVτ , we obtain

Proposition 2.3.

Θσ�,λ

(
hk

t

) =
{

exp
(−t

(
λ2 + (

(d−1)
2 − �

)2))
if [τk|M : σ�] �= 0,

0 if [τk|M : σ�] = 0.
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3. Spectral decomposition for hyperbolic manifolds with cusps

3.1. Hodge Laplacian for hyperbolic manifolds with cusps

Let us choose a unitary representation χ of Γ on a finite-dimensional hermitian vector space
Vχ . We now consider the right quasi-regular representation Rχ on

Hχ := {
φ : G → Vχ

∣∣ φ(γ x) = χ(γ )φ(x) for γ ∈ Γ, x ∈ G, |φ| ∈ L2(Γ \ G)
}

given by (Rχ(x)φ)(y) = φ(yx). As in [29], this representation Rχ of G on Hχ decomposes into
a discrete part and a continuous part. That is,

Rχ = Rd
χ ⊕ Rc

χ acts on Hχ = Hd
χ ⊕ Hc

χ .

The action Rd
χ on Hd

χ is a Hillbert sum of irreducible representations, each of them occurring
with finite multiplicity and the action of Rc

χ on Hc
χ is a direct integral, with no irreducible sub-

representations, of principle series.
For a test function h ∈ Cp(G) with 0 < p < 1, which is of right K-finite, the induced repre-

sentation Rd
χ(h) is of trace class and

TrRd
χ(h) = Tr

∫
G

h(g)Rd
χ (g) dg =

∑
π∈Ĝ

mχ(π)Trπ(h) (3.1)

where mχ(π) denotes the multiplicity of π ∈ Ĝ in Hd
χ .

Let us recall that a d-dimensional noncompact hyperbolic manifold with cusps is given by

XΓ = Γ \ G/K = Γ \ SO0(d,1)/SO(d)

where Γ is a cofinite discrete subgroup of G = SO0(d,1) satisfying the conditions imposed in
the introduction. The vector bundle Ek

χ over XΓ of k-forms twisted by χ is given by

Ek
χ = Vχ ×χ G ×τk

Vτk
.

The Hodge Laplacian �k acting on the space of sections of Vτk
over G/K can be naturally

pushed down to a differential operator acting on C∞
0 (XΓ ,Ek

χ). By abuse of notation, we use the
same notation �k to denote its self-adjoint extension on

L2(XΓ ,Ek
χ

) = {|f | ∈ L2(XΓ ,Vτk
)
∣∣ f (γ x) = χ(γ )f (x) for γ ∈ Γ

}
,

which consists of the τk-isotypic component of Hχ . In general, the operator �k on L2(XΓ ,Ek
χ )

has discrete spectrum σp(�k) as well as continuous spectrum σc(�k). The continuous spectrum
of �k is mainly controlled by the scattering operators Ck

χ(σk, s) and Ck
χ(σk−1, s), which will

be explained in the next subsection, for purely imaginary numbers s = iλ ∈ C. These scattering
operators have the matrix forms of size dc(χ) where

dc(χ) =
κ∑

dj (χ). (3.2)

j=1
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Here dj (χ) denotes the dimension of the maximal subspace of Vχ over which χ |Γ ∩Pj
acts triv-

ially for Pj ∈ PΓ . When d = 2n + 1, the scattering operator Cn
χ(σn, s) has the size 2dc(χ) since

σ±
n is un-ramified.

3.2. Scattering operators and Maass–Selberg relation

Let

L2(M) =
∑
σ∈M̂

⊕ d(σ )Hσ , RM =
∑
σ∈M̂

⊕d(σ )σ

be the decomposition of the right regular representation RM of M on L2(M) where d(σ ) =
dimHσ . A similar induction procedure to the principal series representation starting with RM

instead of σ ∈ M̂ gives rise to a unitary representation of G,∑
σ∈M̂

⊕π(σ,λ) acts on
∑
σ∈M̂

⊕H
(
π(σ,λ)

)
where

π(σ,λ) =
{

d(σ )πσ,λ if wσ = σ,

d(σ )πσ,λ ⊕ d(wσ)πwσ,λ if wσ �= σ.

Here w is the nontrivial element in W(G,A). Now for Pj ∈ PΓ with the corresponding decom-
position Pj = NjAjMj where Pj = xjP0x

−1
j , Nj = xjNx−1

j , Aj = xjAx−1
j , Mj = xjMx−1

j

for certain xj ∈ K , the above definitions carry over to each Mj with obvious changes of notation
such as π(σj , λj ) for 1 � j � κ . For τ ∈ K̂ with [τ |M : σj ] �= 0, let us observe

H(σj , τ ) := (Hσj ,λj
⊗ Vτ )

K ∼= (Hσj
⊗ Vτ )

M,

and that the τ -isotypic component of H(π(σj , λj )) can be identified with the d(σj ) copies of
(Hσj

⊗ Vτ )
M if wσj = σj , or d(σj ) copies of ((Hσj

⊕ Hwσj
) ⊗ Vτ )

M if wσj �= σj . The second
case happens if and only if τ = τn, σ = σ±

n with d = 2n + 1.
For P = Pj ∈ PΓ and Φ ∈ VP ⊗ H(σ, τ ) where VP denotes the maximal invariant subspace

of Vχ under χ |Γ ∩P , the Eisenstein series attached to Φ is defined as

E(P,Φ, s, x) :=
∑

γ∈Γ/Γ ∩P

χ(γ )e(s+ρ)(H(γ −1x))Φ
(
γ −1x

)
for Re(s) >

d − 1

2

where H(x) = Hj(x) is given by the decomposition x = Nj(x) exp(Hj (x))K(x). This is ab-
solutely and uniformly convergent on compact sets in the half plane Re(s) > d−1

2 , and extends
meromorphically to C. These facts can be proved as in [11,29]. For Pi,Pj ∈ PΓ , the constant
term of E(Pi,Φ, s, x) along Pj is defined by

EPj
(Pi,Φ, s, x) = 1

vol(Γ ∩ Nj \ Nj)

∫
Γ ∩N \N

E(Pi,Φ, s, nx)dn
j j
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and has the following expression along Pj ,

EPj
(Pi,Φ, s, x) =

∑
w∈W(Ai,Aj )

e(ws+ρ)(Hj (x))
(
Cτ

ji(w, s)Φ
)
(x)

where W(Ai,Aj ) denotes the set of all bijections w : Ai → Aj defined by wai = xaix
−1 for

x ∈ K and

Cτ
ji(w, s) : VPi

⊗ H(σi, τ ) −→ VPj
⊗ H(σj , τ ), w ∈ W(Ai,Aj ).

Now combining the operators Cτ
ji(xiwx−1

j , xj · s) with the nontrivial element w ∈ W(A,A)

defines the scattering operator

Cτ
χ(σ, s) on Hχ (σ, τ ) :=

κ∑
j=1

⊕VPj
⊗ H(σj , τ ).

When τ = τk , we denote C
τk
χ (σ, s) by Ck

χ(σ, s) for simplicity. In a natural way, we see that

Hχ (σ, τ ) :=
κ∑

j=1

⊕VPj
⊗ H(σj , τ ) ∼= Vc ⊗ H(σ, τ ) where Vc :=

κ∑
j=1

⊕VPj
.

The scattering operator has a meromorphic extension over C and it satisfies the well-known
functional equations

Cτ
χ(σ, s)Cτ

χ (σ,−s) = Id, Cτ
χ (σ, s)∗ = Cτ

χ(σ, s̄). (3.3)

Now we analyze Rc
χ(h) for h ∈ Cp(G) (0 < p < 1) assuming that h is of fixed τ -type. We also

assume that Θσ,λ(h) = Θwσ,wλ(h) if wσ �= σ . (The function hk
t defined in the previous section

satisfies these conditions.) Let us choose an orthonormal basis {Φmn = vm ⊗ ξn} of Hχ (σ, τ ).
We put

E(s, x) :=
∑
m,n

E(Φmn, s, x),

where E(Φmn, s, x) is defined as the usual Eisenstein series E(P,Φ, s, x). Then the kernel
Kc(h : x, y) of Rc

χ(h) on Hc
χ is given by

Kc(h : x, y) =
∑
σ∈M̂

[τ |M : σ ]d(σ )

4π

∞∫
−∞

πχ(σ,λ)(h)E(iλ, x) ⊗ E(iλ, y)∗ dλ

where πχ(σ,λ) is the representation of G on Hχ (σ, τ ) defined by the π(σj , λj )’s.
For Pj ∈ PΓ , the subset Cj (u) = NjAj (u)K ⊂ G is called a cylindrical domain where

Aj(u) = {
at ∈ Aj

∣∣ at = exp(tHj ), t � u
}
.
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Then there is a u0 � 0 such that the sets Cj(u) := p(Cj (u)) ⊂ XΓ = Γ \ G/K are disjoint to
each other for u � u0 and 1 � j � κ where p : G → XΓ denotes the natural projection. The
measure in (2.3) induces the metric

dt2 + e−2t dn2

over Cj (u) where dn2 is the flat metric over (Γ ∩Nj)\Nj . We put XΓ (u) := XΓ −⋃κ
j=1 Cj (u).

Now we have an expansion formula of
∫
XΓ (u)

tr(Kc(h : x, x)) dx as u → ∞ in the following
theorem which can be proved as in Section 6 of [29].

Theorem 3.1 (Maass–Selberg relation). For u � u0 � 0, we have∫
XΓ (u)

tr
(
Kc(h : x, x)

)
dx

=
∑
σ∈M̂

[τ |M : σ ]d(σ )

4π

(
2u

∞∫
−∞

Θσ,λ(h)dλ −
∞∫

−∞
Θσ,λ(h) tr

(
Cτ

χ(σ,−iλ)∂iλC
τ
χ (σ, iλ)

)
dλ

+ π Θσ,0(h) tr
(
Cτ

χ(σ,0)
)) + O

(
u−1).

4. Selberg trace formula

4.1. Trace formula

For 0 < p < 1 the Selberg trace applied to h ∈ Cp(G) has the following form,

TrRd
χ(h) = Iχ (h) + Hχ(h) + Uχ(h) + Wχ(h) + Sχ(h) + Jχ(h) (4.1)

where the left-hand side has the form in (3.1). The terms on the right-hand side are explained
as follows. Here Iχ ,Hχ,Uχ are given by the identity, hyperbolic, unipotent orbital integrals
respectively. These are invariant tempered distributions on G, which were fully analyzed in [25].

First, for Iχ (h) we have

Iχ (h) = dimVχ · vol(Γ \ G) · h(e).

By the Plancherel theorem,

h(e) =
∑

ω∈Ĝd

d(ω)Θω(h) +
∑
σ∈M̂

1

4π

∞∫
−∞

Θσ,λ(h)p(σ,λ)dλ

where d(ω) denotes the formal degree of ω ∈ Ĝd and p(σ,λ) denotes the Plancherel measure.
Let us recall that for G = SO0(2n + 1,1) there is no discrete series so that there are no terms
from Ĝd in the above formula. For G = SO0(2n,1), the discrete series may give a nontrivial
contribution in general. For h = hk , we can see that this contribution is nontrivial only when
t
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k = n, d = 2n and it is the harmonic part of �n in L2(G,Vτn) by Theorem 3.2 in [23]. Repeating
the argument for the τ -spherical function defined for ω ∈ Ĝd as in Section 2.3, we see that
Θω(hk

t ) is a nonzero constant only when k = n, d = 2n and Θω(hk
t ) = 0 otherwise. Now we

have

Iχ

(
hk

t

) = dimVχ · vol(Γ \ G) ·
(

δ̃n(k)c(τn)

+
∑

[τk |M :σ�]�=0

1

4π

∞∫
−∞

e−t (λ2+(
(d−1)

2 −�)2)p(σ�, λ) dλ

)
(4.2)

where δ̃n(k) = 1 if k = n, d = 2n, δ̃n(k) = 0 otherwise, and c(τn) is a constant only depending
on τn.

By Theorem 3.1 in [17] and taking care of the normalization, the Plancherel measure corre-
sponding to (πσk,λ, Hσk,λ) is given by

p(σk,λ) = π2−4(n− 1
2 )Γ

(
n + 1

2

)−2

d(σk)

×
k∏

j=1

(
λ2 + (n − j + 1)2) n∏

j=k+1

(
λ2 + (n − j)2) if d = 2n + 1,

p(σk, λ) = π2−4(n−1)Γ (n)−2 d(σk) tanh(πλ)

× λ

k∏
j=1

(
λ2 +

(
n − j + 1

2

)2) n−1∏
j=k+1

(
λ2 +

(
n − j − 1

2

)2)
if d = 2n, (4.3)

where σn means σ±
n when d = 2n + 1.

The term Hχ(h) is given by

Hχ(h) =
∑

γ∈Γhyp

trχ(γ ) · vol(Γγ \ Gγ ) ·
∫

Gγ \G
h
(
g−1γg

)
d(Gγ g) (4.4)

where Γhyp denotes the set of the Γ -conjugacy classes of the hyperbolic elements in Γ , and Γγ ,
Gγ denote the centralizers of γ in Γ , G respectively. We may assume that a hyperbolic element
γ ∈ Γ has the form aγ mγ ∈ A+M where A+ = {etH , t > 0}. By Section 6 in [28], we have

vol(Γγ \ Gγ ) ·
∫

Gγ \G
h
(
g−1γg

)
d(Gγ g)

=
∑

̂ l(Cγ )j (γ )−1D(aγ mγ )−1trσ(mγ )
1

2π

∞∫
Θσ,λ(h)e−il(Cγ )λ dλ (4.5)
σ∈M −∞
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where l(Cγ ) denotes the length of the closed geodesic determined by γ , j (γ ) denotes the positive

integer such that γ = γ
j (γ )

0 with a primitive γ0, and

D(aγ mγ ) = aρ
γ

∣∣det
(
Ad(aγ mγ )−1 − Id|n

)∣∣.
For h = hk

t , we have

Hχ

(
hk

t

) = 1√
4πt

∑
γ∈Γh

trχ(γ )
∑

[τk |M :σ�]�=0

l(Cγ0)

× ∣∣det
(
Ad(aγ mγ )−1 − Id|n

)∣∣−1trσ�(mγ )e− l(Cγ )2

4t e−t (
(d−1)

2 −�)2
e− (d−1)l(Cγ )

2 (4.6)

by Proposition 2.3, the Fourier integral of the Gaussian and a
ρ
γ = e

(d−1)l(Cγ )

2 .
The terms Uχ(h),Wχ(h) will be discussed later. The scattering term Sχ(h) and the residual

term Jχ(h) have the following form,

Sχ(h) = 1

4π

∑
τ∈K̂

∑
σ∈M̂

[τ |M : σ ]d(σ )

∞∫
−∞

Tr
(
πχ(σ,λ)(h)Cτ

χ (σ,−iλ)∂iλC
τ
χ (σ, iλ)

)
dλ,

Jχ (h) = −1

4

∑
τ∈K̂

∑
σ∈M̂

[τ |M : σ ]d(σ )Tr
(
πχ(σ,0)(h)Cτ

χ (σ,0)
)
.

For h = hk
t , these term are

Sχ(h) = 1

4π

∑
[τk |M :σ�]�=0

d(σ�)

∞∫
−∞

e−t (λ2+(
(d−1)

2 −�)2) tr
(
Ck

χ(σ�,−iλ)∂iλC
k
χ (σ�, iλ)

)
dλ, (4.7)

Jχ(h) = −1

4

∑
[τk |M :σ�]�=0

d(σ�) e−t (
(d−1)

2 −�)2
tr
(
Ck

χ(σ,0)
)
, (4.8)

which are the finite terms as |u| → ∞ on the right-hand side of the Maass–Selberg relation in
Theorem 3.1 when h = hk

t .

4.2. Unipotent terms

By the computation in [20], the terms Uχ(h) and Wχ(h) are given by the sum over P =
NAM ∈ PΓ of the following term

vol
(
ΓP \ N(P )

)
lim
s→0

d

ds

(
sζP (s,χ)TP (h, s)

)
(4.9)

under our normalization. Here the Epstein type zeta function ζP (s,χ) is defined by

ζP (s,χ) =
∑

trχ(η)|Xη|−(d−1)(s+1) for Re(s) > 0,
η∈ΓP ,η �=e
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where η = exp(Xη) and |Xη|2 = 〈Xη,Xη〉. The other term TP (h, s) is given by

TP (h, s) = 1

A(n)

∫
N

∫
K

h
(
knk−1)| logn|(d−1)s dk dn

where A(n) is the volume of the unit sphere in n. By Section 1 of [20] (and Section 7 of [29]),
we know that s �→ TP (h, s) is holomorphic over a certain strip containing the imaginary axis.
Let us remark that condition (1.1) is used in the derivation of (4.9) and will be used in the forth-
coming analysis of ζP (s,χ). Now let us observe that χ |ΓP

decomposes into one-dimensional
representations χθ ’s of ΓP (since ΓP is abelian by (1.1)) such that

χθ (η) = exp
(
2πi(n1θ1 + · · · + nd−1θd−1)

)
for η =

d−1∏
j=1

η
nj

j

where {ηi} denotes a fixed basis of ΓP . For P ∈ PΓ , we decompose

V = VP ⊕ VP
⊥

where VP ⊂ V is the maximal subspace over which χ |ΓP
acts trivially, so that χ decomposes

into a direct sum of IdVP
and χθ ’s with nontrivial θ = (θ1, . . . , θd−1), that is, one of θi is not an

integer.

Proposition 4.1. The Epstein type zeta function

ζP (s,χθ ) :=
∑

η∈ΓP ,η �=e

χθ (η)|Xη|−(d−1)(s+1)

has a meromorphic extension over C. This meromorphic function is entire if θ is nontrivial and
has a simple pole at s = 0 if θ is trivial.

Proof. Since ζP (s,χθ ) is absolutely convergent for Re(s) > 0, it is enough to consider a mero-
morphic extension of

ζP (s,χθ ) = 1

Γ (z)

∞∫
0

tz−1
( ∑

η∈ΓP ,η �=e

χθ (η)e−t |Xη|2
)

dt with z = (d − 1)

2
(s + 1),

over the left half plane Re(s) � 0. By a standard argument, one can obtain such a meromorphic
extension over C if we have the asymptotic expansion of∑

η∈ΓP ,η �=e

χθ (η)e−t |Xη|2 as t → 0. (4.10)

To this end, we recall the Jacobi type identity

∑
χθ (η)e−t |Xη|2 = vol

(
ΓP \ N(P )

)−1
(

π

t

) (d−1)
2 ∑

e− λk
4t (4.11)
η∈ΓP λk
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where λk denotes the eigenvalues of the Laplacian �θ acting on the space of the sections of
the flat vector bundle defined by χθ over ΓP \ N(P ). The equality (4.11) follows by putting
t = (4s)−1 at the following equality

Tr
(
e−s�θ

) =
∫

ΓP \N(P )

(4πs)−
d−1

2

( ∑
η∈ΓP

χθ (η)e− d(n,ηn)2

4s

)
dn

where d(n,ηn) denotes the Euclidean distance given by the normalized Cartan–Killing form,
which equals to |Xη|. Then �θ has the zero eigenvalue if and only if θ is trivial. Hence

∑
η∈ΓP ,η �=e

χθ (η)e−t |Xη|2 = −1 + R(t)

where R(t) = O(e− c
t ) for a certain c > 0 as t → 0 if θ is nontrivial and t−

(d−1)
2 + O(e− c

t )

as t → 0 if θ is trivial. It follows that the meromorphic extension of ζP (s,χθ ) is entire if θ is
nontrivial and has a simple pole at s = 0 if θ is trivial. �

Now we have

ζP (s,χ) = dP (χ) ·
∑

η∈ΓP ,η �=e

|Xη|−(d−1)(s+1) +
∑
θ

∑
η∈ΓP ,η �=e

χθ (η)|Xη|−(d−1)(s+1) (4.12)

where dP (χ) = dimVP and the second sum runs over the nontrivial θ . The first and second
sums on the right-hand side of (4.12) have a simple pole, and is regular at s = 0, respectively, by
Proposition 4.1. Therefore we conclude

lim
s→0

d

ds

(
sζP (s,χ)TP (h, s)

) = dP (χ)
(
CP TP (h) + RP T ′

P (h)
) + C̃P TP (h) (4.13)

where CP ,RP denote, respectively, the constant term and the residue of the ordinary Epstein
zeta function at s = 0, C̃P denotes the sum of the constant terms of ζP (s,χθ ) with nontrivial θ

at s = 0, and

TP (h) = 1

A(n)

∫
N

∫
K

h
(
knk−1)dk dn,

T ′
P (h) = (d − 1)

A(n)

∫
N

∫
K

h
(
knk−1) log | logn|dk dn.

The term Uχ(h) is the sum over P ∈ PΓ of the invariant part of the right-hand side of (4.13),
that is,

Uχ(h) =
∑

P ∈P

vol
(
ΓPj

\ N(Pj )
)(

dPj
(χ)CPj

+ C̃Pj

)
TPj

(h) (4.14)

j Γ
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with

TPj
(h) = 1

A(n)

∑
σ∈M̂

1

2π

∞∫
−∞

Θσ,λ(h)dλ (4.15)

by Section 6 in [28]. The remaining part is

Wχ(h) =
∑

Pj ∈PΓ

vol
(
ΓPj

\ N(Pj )
)
dPj

(χ)RPj
T ′

Pj
(h).

By the computation in [3],

vol
(
ΓP \ N(P )

)
RP

(d − 1)

A(n)
= 1 for P ∈ PΓ

under our normalization. Hence

Wχ(h) = dc(χ)

∫
N

∫
K

h
(
knk−1) log | logn|dk dn. (4.16)

5. Computation of the weighted orbital integral

5.1. Weighted orbital integral

The weighted orbital integral given in (4.16)

Wχ(h) = dc(χ)

∫
N

∫
K

h
(
knk−1) log | logn|dk dn (5.1)

is a non-invariant tempered distribution. To explain this, let us recall that the intertwining operator

JP |P (σ,λ)φ :=
∫
N

φ(xn̄) dn̄ : Hσ,λ(P ) → Hσ,λ(P )

where the notation Hσ,λ(P ) denotes the principal series representation with its dependence on P .
The restriction to K defines an isomorphism from Hσ,λ(P ) to

L2(K,Hσ ) := {
f : K → Hσ

∣∣ f (mk) = σ(m)f (k), |f | ∈ L2(K)
}
.

By this isomorphism, JP |P (σ,λ) can be regarded as a family of operators acting on L2(K,Hσ ).
Let

JP (σ,λ : h) = −Tr
(
πσ,λ(h)J (σ,λ)−1∂iλJ (σ,λ)

)

P |P P |P
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where ∂iλ denotes the derivative under the identification (2.2) for a family of operators acting on
L2(K,Hσ ). Now we can get the invariant part of Wχ(h) by subtracting the non-invariant part as
follows,

IP (h) =
∫
N

∫
K

h
(
knk−1) log | logn|dk dn

− 1

2

(
1

2π
p.v.

∑
σ∈M̂

d(σ )

∞∫
−∞

JP (σ,λ : h)dλ −
∑
σ∈M̂

d(σ )
n(σ )

2
Θσ,0(h)

)
(5.2)

where 2n(σ ) is the order of the zero of p(σ,λ) at λ = 0. Now one can consider the Fourier
transform of invariant tempered distribution IP for h ∈ C 2(G), which is expressed in terms of the
discrete series and the principal series.

Let Hα ∈ tC be the coroot corresponding to α ∈ ±ΣG, that is, α(Hα) = 2, α′(Hα) ∈ Z for all
α,α′ ∈ ±ΣG, and let

Π =
∏

α∈ΣM

Hα, (5.3)

which is an element of the symmetric algebra S(tmC). We denote the simple reflection corre-
sponding to α by sα for α ∈ ΣG. By Corollary on p. 96 of [13] (taking λP = β

2 with β(Hβ) = 2),
we have

Proposition 5.1. For h ∈ C 2(G)− C 2
0(G) where C 2

0(G) is the subspace of the cusp form in C 2(G),

IP (h) = 1

2
· 1

2π

∑
σ∈M̂

∞∫
−∞

Ω(σ,−λ)Θσ,λ(h)dλ (5.4)

where

Ω(σ,λ) = 2d(σ )ψ(1) − 1

2

∑
α∈ΣA

β(Hα)
Π(sαλσ )

Π(ρM)

(
ψ

(
1 + λσ (Hα)

) + ψ
(
1 − λσ (Hα)

))
. (5.5)

Here ψ is the digamma function and λσ − ρM is the highest weight of (σ, iλ) ∈ M̂ × ia.

Remark 5.2. By Lemma 5 in [3], if G = SO0(d,1) for d � 3, the equality (5.4) still holds
without any contribution from the discrete series for any h ∈ C 2(G).

5.2. Computation for σk

To express Wχ(h) in terms of the elements in Ĝ, we use (5.2) and (5.5).
First let us investigate the last term on the right-hand side of (5.2). From (4.3), we have

n(σk) = 1 (0 � k � n − 1), n
(
σ±

n

) = 0 if d = 2n + 1,

n(σ ) = 1 (0 � k � n − 1) if d = 2n.
k
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Next we consider the term given by JP (σ,λ : h) in (5.2). For a fixed irreducible representation τ ,
it is known that the Harish–Chandra C-function Cτ (σ, iλ) satisfies

TτJP |P (σ,λ)−1∂iλJP |P (σ,λ) = Cτ (σ, iλ)−1∂iλCτ (σ, iλ)Tτ

where Tτ is the projection to τ -isotypic component of Hσ,λ. Hence, if h is of τ -type, we have

JP (σ,λ : h) = −Θσ,λ(h)Cτ (σ, iλ)−1∂iλCτ (σ, iλ) (5.6)

when [τ |M : σ ] �= 0. By Theorem 8.2 in [4], we can derive the following equalities:

(1) When d = 2n + 1,

∂iλ logCτk
(σk, iλ) = 1

iλ + n − k
−

(
1

iλ
+ · · · + 1

iλ + n

)
,

∂iλ logCτk
(σk−1, iλ) = 1

iλ − n + k − 1
−

(
1

iλ
+ · · · + 1

iλ + n

)
(5.7)

where σn means σ±
n .

(2) When d = 2n,

∂iλ logCτk
(σk, iλ) = 1

iλ + n − k − 1
2

+
(

ψ(iλ) − ψ

(
iλ + n + 1

2

))
+ 2 log 2,

∂iλ logCτk
(σk−1, iλ) = 1

iλ − n + k − 1
2

+
(

ψ(iλ) − ψ

(
iλ + n + 1

2

))
+ 2 log 2 (5.8)

where τn means τ±
n .

Now the remaining task to compute Wχ(h) is to obtain an explicit form of Ω(σk,λ) which
express IP (h) in terms of the principal series.

Theorem 5.3. For the representations σk of SO(d − 1) for 0 � k � [ d−1
2 ], we have

Ω(σk,λ) = −d(σk)

2

(
ψ

(
iλ − d − 1

2

)
+ ψ

(
−iλ − d − 1

2

)
+ ψ(iλ + 1) + ψ(−iλ + 1)

)

+ (−1)k( d−1
2 − k)

λ2 + ( d−1
2 − k)2

(
k−1∑
j=0

(−1)j d(σj ) +
d−1∑

j=k+1

(−1)j+1d(σj )

)
− P d

k (λ)

where σn denotes σ±
n if d = 2n + 1 and P d

k (λ) is an even polynomial of 2n − 4 degree for
d = 2n + 1 � 5 or d = 2n � 4 and a constant for d = 3,2.

The proof of this theorem will be given in Appendix A.
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For τk, σ� with [τk|M : σ�] �= 0, we put

Φ(τk, σ�, λ) := −d(σ�)
1

2

(
∂iλ logCτk

(σ�, iλ) − ∂iλ logCτk
(σ�,−iλ)

)
.

Then by equalities (5.7), (5.8) and Theorem 5.3, denoting a possibly different polynomial by the
same notation P d

k (λ) (the change happens in the constant term of P d
k (λ) only when d = 2n) we

have

Corollary 5.4. The following equalities hold,

Ω(σk,λ) + Φ(τk, σk, λ) = −d(σk)
(
ψ(iλ + 1) + ψ(−iλ + 1)

) + (−1)k( d−1
2 − k)

λ2 + ( d−1
2 − k)2

×
(

k−1∑
j=0

(−1)j d(σj ) +
d−1∑
j=k

(−1)j+1d(σj )

)
− P d

k (λ),

Ω(σk,λ) + Φ(τk+1, σk, λ) = −d(σk)
(
ψ(iλ + 1) + ψ(−iλ + 1)

) + (−1)k( d−1
2 − k)

λ2 + ( d−1
2 − k)2

×
(

k∑
j=0

(−1)j d(σj ) +
d−1∑

j=k+1

(−1)j+1d(σj )

)
− P d

k (λ).

6. Zeta regularized determinant for hyperbolic manifolds with cusps

Now let us recall that the heat operator e−t�k over XΓ is not of trace class, so that we can not
take its usual trace. To overcome this, we follow the idea of Melrose in [16] as follows. If the
heat operator e−t�k would be of trace class, then its trace is the same as

∫
XΓ

tr(e−t�k (x, x)) dx,
although this integral diverges in our case. However, we could remove the diverging part of the
expansion of ∫

XΓ (u)

tr
(
e−t�k (x, x)

)
dx as u → ∞,

by Theorem 3.1 and define the regularized trace Trr(·) of e−t�k to be the remaining finite part
of it. Then we have

Trr
(
e−t�k

) =
∑

λj ∈σp(�k)

e−tλj +
∑

[τk |M :σ�]�=0

(
d(σ�)

4
e−td2

� tr
(
Ck

χ(σ�,0)
)

− d(σ�)

4π

∞∫
e−t (λ2+d2

� ) tr
(
Ck

χ(σ�,−iλ)∂iλC
k
χ (σ�, iλ)

)
dλ

)
(6.1)
−∞
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where σp(�k) denotes the point spectrum of �k , d� = ( d−1
2 − �), d(σ�) = dim(Vσ�

). Let us
observe that the right-hand side of (6.1) is the same as the geometric side of the Selberg trace
formula applied to the test function hk

t over G, so that

Trr
(
e−t�k

) = Iχ

(
hk

t

) + Hχ

(
hk

t

) + Uχ

(
hk

t

) + Wχ

(
hk

t

)
(6.2)

by (4.1). Using this regularized trace, let us define the spectral zeta function of �k by

ζ�k
(s) := 1

Γ (s)

( 1∫
0

+
∞∫

1

)
t s−1 Trr

(
e−t�k − Pk

)
dt (6.3)

where Pk denotes the orthogonal projection onto kerL2(�k). Here the small and large time inte-
grals

∫ 1
0 ,

∫ ∞
1 are defined for Re(s) � 0 and Re(s) � 0 respectively. This decomposition of the

integral over the small and large times is needed when d = 2n + 1, k = n since the continuous
spectrum of �k reaches zero, that is, the heat operator e−t�k does not decay exponentially as
t → ∞. To state the theorem on the meromorphic extension of ζ�k

(s), we introduce a notation

d(d, k) :=
(

(−1)k−1

(
k−1∑
j=0

(−1)j d(σj )

))
=

(
d − 1

k

)
−

(
d − 2

k

)
.

Then we have

−2 d(d, k) = −2

(
(−1)k−1

(
k−1∑
j=0

(−1)j d(σj )

))

= (−1)k

(
k−1∑
j=0

(−1)j d(σj ) +
d−1∑
j=k

(−1)j+1d(σj )

)
,

which appeared in Corollary 5.4. Now we have

Theorem 6.1. The spectral zeta function ζ�k
(s) = ζ�d−k

(s) has a meromorphic extension over C,
which has the following form if d = 2n

Γ (s)ζ�k
(s) =

∞∑
j=−n

aj

s + j
+

∞∑
j=−(n−2)

a′
j

s + j − 1
2

+
∞∑

j=0

bj

(s + j − 1
2 )2

− βk + δn(k)ηe

s
+ He(s),

and if d = 2n + 1

Γ (s)ζ�k
(s) =

∞∑
j=−n

aj

s + j − 1
2

+
∞∑

j=0

bj

(s + j − 1
2 )2

+ δn(k)

∞∑ cj

s − j − 1
− βk + δn(k)ηo

s
+ Ho(s)
j=0 2
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for some constants aj , a
′
j , bj , cj where βk = dim kerL2(�k), δn(k) equals 1 if k = n or k =

(d − n) and vanishes otherwise,

ηe := dc(χ)d(d,n), ηo := −1

2

(
dc(χ)d(d,n − 1)

)
and He(s), Ho(s) are entire functions. In particular, ζ�k

(s) is regular at s = 0.

Proof. Let us first deal with the large time contribution
∫ ∞

1 dt in (6.3). The continuous spectrum
of �k is given by the union of the half intervals [( d−1

2 − �)2,∞) for � = k, k − 1, hence the
bottom of the continuous spectrum of �k does not reach zero unless d = 2n + 1 and � = k = n.
Equivalently, Trr(e

−t�k ) decays exponentially as t → ∞ for other cases, which we can see easily
from the right-hand side of (6.1). Therefore, the large time contribution to the meromorphic
extension is trivial unless d = 2n+ 1 and � = k = n. Now for this case, we observe the following
expansion at λ = 0,

tr
(
Cn

χ(σn,−iλ)∂iλC
n
χ (σn, iλ)

) =
∞∑

j=0

a2j λ
2j ,

which follows from (3.3). From this, we see that

1∫
−1

e−tλ2
tr
(
Cn

χ(σn,−iλ)∂iλC
n
χ (σn, iλ)

)
dλ ∼

∞∑
j=0

bj t
−(j+ 1

2 ) as t → ∞. (6.4)

The corresponding integrals over (−∞,1]λ ∪ [1,∞)λ decay exponentially as t → ∞. For d =
2n+1, σn is un-ramified so that tr(Cn

χ (σn,0)) = 0. Hence the residual term vanishes for this case.
Now the expansion (6.4) and these facts imply that the large time integral

∫ ∞
1 is well defined for

Re(s) < 1
2 and extends meromorphically to the whole complex plane with the following form

∞∫
1

t s−1 Trr
(
e−t�n − Pn

)
dt =

∞∑
j=0

cj

s − j − 1
2

+ H1(s) (6.5)

for some constants cj and a holomorphic function H1(s).

Next to deal with the small time integral
∫ 1

0 ·dt , we use the right-hand side of equality (6.2).
For Iχ (hk

t ), we separate the cases d = 2n and d = 2n + 1. First, if d = 2n recall that the
Plancherel measure P(σ�,λ) is a sum of λ2k+1 tanh(πλ) with 0 � k � n− 1 from (4.3). Now we
observe

∞∫
−∞

e−tλ2
λ2k+1 tanh(πλ)dλ = (−1)k∂k

t

∞∫
−∞

e−tλ2
λ tanh(πλ)dλ

= (−1)k∂k
t

∞∫
e−tx tanh(π

√
x )dx
0
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= (−1)k∂k
t

(
t−1 π

2

∞∫
0

e−tx

(
cosh−2(π

√
x)√

x

)
dx

)

= (−1)k∂k
t

(
t−1 π

2

∞∫
0

∞∑
j=0

(−tx)j

j !
(

cosh−2(π
√

x)√
x

)
dx

)
. (6.6)

Hence if d = 2n, we conclude

Iχ

(
hk

t

) =
∑

�=k,k−1

e−td2
� ·

∞∑
j=0

a�j t
−n+j + δ̃n(k)c̃(Γ,χ, τn) (6.7)

where a�j are some constants and δ̃n(k)c̃(Γ,χ, τn) is the contribution from the first term on the
right-hand side of (4.2). Second, if d = 2n + 1 recall that the Plancherel measure p(σ�,λ) is
a polynomial of order 2n from (4.3). Hence we can easily see

Iχ

(
hk

t

) =
∑

�=k,k−1

e−td2
� ·

n∑
j=0

a�j t
−n+j− 1

2 (6.8)

for some constants a�j . For HΓ (hk
t ), by (4.6), we have

Hχ

(
hk

t

) ∼ ae− c2
4t as t → 0 (6.9)

for a constant a and c := min{γ :hyperbolic}l(Cγ ) is a positive real number. For Uχ(hk
t ), by (4.14)

and (4.15) we can see that this can be dealt as Iχ (hk
t ) for d = 2n + 1 and it consists of the terms

with j = n in (6.8). For Wχ(hk
t ), by Corollary 5.4, we have

Wχ

(
hk

t

) = dc(χ)

4π

∑
�=k,k−1

∞∫
−∞

e−t (λ2+d2
� )

(
P�(λ) + Q�(λ) + Rk

�(λ)
)
dλ. (6.10)

(There may be an additional constant from the discrete series on the right-hand side of (6.10)
when d = 2, k = 1.) Here P�(λ) is an even polynomial of degree at most (2n− 4) for d = 2n+ 1
or d = 2n,

Q�(λ) = −d(σ�)
(
ψ(iλ + 1) + ψ(−iλ + 1)

)
, Rk

� (λ) = −(−1)k−�2 d(d, k)
d�

λ2 + d2
�

.

It is easy to see that the contribution of P�(λ) is just the same as (6.8) replacing n by (n− 2). For
Q�(λ), we use the following asymptotic expansion

ψ(z + 1) ∼ log z + 1

2z
−

∞∑ B2k

(2k)z2k
as z → ∞,
k=1
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where the B2k’s are Bernoulli numbers, to obtain

∞∫
−∞

e−tλ2
Q�(λ)dλ ∼

∞∑
j=0

aj t
j− 1

2 + b0t
− 1

2 log t as t → 0 (6.11)

for some constants aj and b0. By an elementary computation,

d

dt

∞∫
−∞

e−t (λ2+d2
� ) d�

λ2 + d2
�

dλ = −d�

√
π√
t
e−td2

� , (6.12)

which implies

∞∫
−∞

e−t (λ2+d2
� ) d�

λ2 + d2
�

dλ = π +
∞∑

j=0

aj t
j+ 1

2 (6.13)

for some constants aj . By (6.8), (6.9), (6.11), (6.13), and the Taylor expansion of e−td2
� at t = 0,

if d = 2n

Iχ

(
hk

t

) + Hχ

(
hk

t

) + Uχ

(
hk

t

) + Wχ

(
hk

t

)
∼ −δn(k)ηe +

∞∑
j=−n

aj t
j +

∞∑
j=−(n−2)

a′
j t

j− 1
2 +

∞∑
j=0

bj t
j− 1

2 log t as t → 0

for some constants aj , a
′
j , bj where ηe = dc(χ)d(d,n), and if d = 2n + 1

Iχ

(
hk

t

) + Hχ

(
hk

t

) + Uχ

(
hk

t

) + Wχ

(
hk

t

)
∼ −δn(k)ηo +

∞∑
j=−n

aj t
j− 1

2 +
∞∑

j=0

bj t
j− 1

2 log t as t → 0

for constants aj , bj where ηo = − 1
2 (dc(χ)d(d,n − 1)). Therefore the small time integral

∫ 1
0 is

well defined for Re(s) > d
2 and extends meromorphically on C with the following form if d = 2n

Γ (s)ζ�k
(s) =

∞∑
j=−n

aj

s + j
+

∞∑
j=−(n−2)

a′
j

s + j − 1
2

+
∞∑

j=0

bj

(s + j − 1
2 )2

− βk + δn(k)ηe

s
+ H2(s),

and if d = 2n + 1

Γ (s)ζ�k
(s) =

∞∑ aj

s + j − 1
+

∞∑ bj

(s + j − 1 )2
− βk + δn(k)ηo

s
+ H2(s)
j=−n 2 j=0 2
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for some (new) constants aj , a
′
j , bj and a holomorphic function H2(z). For d = 2n+1 and k = n,

combining this and (6.5) completes the proof. �
By Theorem 6.1, we can define the regularized determinant of �k by

detζ �k := exp

(
− d

ds

∣∣∣∣
s=0

ζ�k
(s)

)
and the analytic torsion T (XΓ ,ρ) by

T (XΓ ,χ) := detζ �1

(detζ �2)2
· (detζ �3)

3

(detζ �4)4
. . . (detζ �d−1)

(−1)d (d−1) · (detζ �d)(−1)d+1d .

Note that our definition of analytic torsion is a generalization of the original one given in [24],
which reduces to (the square of) the original one in [24] when XΓ is compact. We also remark
that a similar definition of the analytic torsion was introduced by Hassell in [12] using the b-trace.

For a hyperbolic manifold XΓ with cusps, T (XΓ ,χ) is nontrivial even if d = 2n as we will
see in Section 8.

In the following section, we will relate T (XΓ ,χ) with the leading coefficient R∗
χ (0) of the

Ruelle zeta function Rχ(s) at s = 0. To do this, we will need following expression of Rχ(s) (for
instance, see [6, p. 532]),

Rχ(s) =
d−1∏
k=0

Zχ(σk, s + k)(−1)k+1
(6.14)

in terms of the Selberg zeta function Zχ(σ�, s) defined by

Zχ(σk, s) := exp

(
−

∑
γ∈Γhyp

trχ(γ )j (γ )−1D(γ )−1trσk(mγ )e−(s− d−1
2 )l(Cγ )

)
(6.15)

for Re(s) > d − 1. Here we may assume that γ is conjugate to aγ mγ ∈ A+M and D(γ ) =
D(aγ mγ ). We also put Zχ(σn, s) = Zχ(σ+

n , s) · Zχ(σ−
n , s) when d = 2n + 1. By Theorem 4.6

in [10], the Selberg zeta function Zχ(σ�, s) has a meromorphic extension over C.

7. Proof of Theorem 1.1

Throughout this section, we assume d = 2n + 1.
First, taking the Mellin transform M(·) of equality (6.2), we have

M
(
Trr

(
e−t�k

) − βk

) = MIχ

(
hk

t

) + MHχ

(
hk

t

) + MUχ

(
hk

t

) + MWχ

(
hk

t

) − M(βk). (7.1)

For the left-hand side of (7.1), we have

Lemma 7.1. The following equality holds,

lim
s→0

(
M

(
Trr

(
e−t�k

) − βk

)
(s) + Γ (s)

(
βk + δn(k)ηo

)) = ζ ′
�k

(0).
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Proof. From the definition, we have

ζ ′
�k

(0) = lim
s→0

1

s

(
ζ�k

(s) − ζ�k
(0)

) = lim
s→0

(
M

(
Trr

(
e−t�k

) − βk

) − Γ (s)ζ�k
(0)

)
.

Moreover, by Theorem 6.1,

ζ�k
(0) = −βk − δn(k)ηo.

Our lemma now follows easily. �
Now we want to obtain the explicit form of each term at s = 0 on the right-hand side of (7.1).

First, the last term M(βk) is defined by

M(βk)(s) =
1∫

0

t s−1βk dt +
∞∫

1

t s−1βk dt

where the first (second) term on the right-hand side has a meromorphic extension from the half
plane with Re(s) � 0 (Re(s) � 0). These terms equal βk

s
and −βk

s
, respectively so that

M(βk)(s) ≡ 0. (7.2)

The term MIχ(hk
t ) is computed in Lemma 3 on p. 533 in [6]. Let us present some details of

these computations for completeness. By Proposition 2.3, (4.2) and (4.3),

Iχ

(
hk

t

) = dimVχ · vol(Γ \ G)
∑

�=k,k−1

e−t (n−�)2 1

4π

∞∫
−∞

e−tλ2
p(σ�,λ) dλ

where p(σ�,λ) is an even polynomial. Now for the integral part, each monomial can be treated
as

∞∫
−∞

e−tλ2
λ2a dλ =

(
− d

dt

)a
∞∫

−∞
e−tλ2

dλ = bat
−a− 1

2 (7.3)

where ba = √
π 1

2 · 3
2 . . . 2a−1

2 so that MIχ(hk
t )(s) consists of

Ea(s) := ba

∞∫
0

t s−a− 3
2 e−t (n−�)2

dt = baΓ

(
s − a − 1

2

)
(n − �)−2(s−a− 1

2 ) (7.4)

for Re(s) > a + 1 . When � < n, MIχ(hk) has a meromorphic extension over C and
2 t
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Ea(0) = baΓ

(
−a − 1

2

)
(n − �)2a+1

= (−1)a+1 2π

2a + 1
(n − �)2a+1 = −2π

n−�∫
0

(iλ)2a dλ.

When � = n, we split the integral defining Ea(s) as we did for M(βk),

Ea(s) = ba

1∫
0

t s−a− 3
2 dt + ba

∞∫
1

t s−a− 3
2 dt

where the first (second) term on the right-hand side has a meromorphic extension from the half
plane with Re(s) � 0 (Re(s) � 0). These terms equal ba

s−a− 1
2

and − ba

s−a− 1
2

, respectively, so that

Ea(s) ≡ 0 if � = n.

In conclusion,

MIχ

(
hk

t

)
(0) = −1

2
dimVχ · vol(Γ \ G)

∑
�=k,k−1

n−�∫
0

p(σ�, iλ) dλ.

The term Uχ(hk
t ) and the part with P�(λ) in (6.10) denoted by W 1

χ (hk
t ) can be dealt in the

same way as we did for Iχ (hk
t ) and we have

M
(
Iχ

(
hk

t

) + Uχ

(
hk

t

) + W 1
χ

(
hk

t

))
(0) = −1

2

∑
�=k,k−1

n−�∫
0

P̃�(iλ) dλ. (7.5)

Here

P̃�(s) = dimVχ · vol(Γ \ G)p(σ�, s) − dc(χ)P d
� (s) + C(χ, k) (7.6)

where C(χ, k) is a constant from Uχ(hk
t ), which is determined by (4.14), (4.15).

For MHχ(hk
t ), first we recall

t s−1 = 1

Γ (1 − s)

∞∫
0

(
x(x + 2c)

)−s
e−x(x+2c)t (2x + 2c) dx for Re(s) < 0,

where c > 0 following [6,18]. Now using
∞∫

0

e−x(x+2c)t (2x + 2c)
1√
4πt

e− l2
4t e−tc2

dt = e−l(x+c)

and putting c = (n − �), l = l(Cγ ) in (4.6), we have

MHχ(hk
t )(s) =

∑
�=k,k−1

1

Γ (1 − s)

∞∫ (
x
(
x + 2(n − �)

))−s
(

d

dx
logZχ(σ�,2n − � + x)

)
dx (7.7)
0
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for Re(s) < 0. By Theorem 4.6 in [10], the Selberg zeta function Zχ(σ�, s) has a meromorphic
extension over C. In particular, it follows that Zχ(σ�,2n − � + x) has the following form near
x = 0,

Zχ(σ�,2n − � + x) = Z2n−�x
−r2n−�

(
1 + O(x)

)
(7.8)

where r2n−� denotes the order of singularity of Zχ(σ�, s) at s = 2n − �. By Theorem 2.1 of [9]
or Theorem 4.6 of [10],

r2n−� =
{−α� if � �= n,

−2αn if � = n,
(7.9)

where

αk := βk − βk−1 + βk−2 − · · · ± β0.

Using this, the integral part on the right-hand side of (7.7) can be analyzed as

∞∫
0

(
x
(
x + 2(n − �)

))−s
(

d

dx
logZχ(σ�,2n − � + x)

)
dx

=
∞∫

ε

d

dx
logZχ(σ�,2n − � + x)dx

+ O(s) + O(ε) − r2n−�

ε∫
0

x−s−1(x + 2(n − �)
)−s

dx (7.10)

where

ε∫
0

x−s−1(x + 2(n − �)
)−s

dx =
{

log(2(n − �)ε) − 1
s

+ O(s) + O(ε1−|s|) if � < n,

log ε − 1
2s

+ O(s) if � = n.
(7.11)

From (7.7), (7.9), (7.10) and (7.11), for small s < 0,

MHχ

(
hk

t

)
(s) =

∑
�=k,k−1

(
− logZ2n−� − r2n−� log

(
2(n − �)

) − α�

s

)
+ O(s) + O

(
ε

1
2
)
.

Hence we obtain

lim
s→0

(
MHχ

(
hk

t

)
(s) − βkΓ (s)

) =
∑

�=k,k−1

− logZ2n−� + α�

(
log 2(n − �)

)
(7.12)

where the term log(2(n − �)) disappears when � = n.
To analyze the remaining terms of Wχ(hk

t ) in (6.10), let us denote the corresponding parts
of Wχ(hk) with Q�(λ), R�(λ) for � = k, k − 1 by W 2(hk), W 3(hk) respectively, that is,
t χ t χ t
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W 2
χ

(
hk

t

) = −dc(χ)

4π

∑
�=k,k−1

d(σ�)

∞∫
−∞

e−t (λ2+(n−�)2)
(
ψ(iλ + 1) + ψ(−iλ + 1)

)
dλ,

W 3
χ

(
hk

t

) = −dc(χ)d(d, k)

2π

∑
�=k,k−1

(−1)k−�

∞∫
−∞

e−t (λ2+(n−�)2) (n − �)

λ2 + (n − �)2
dλ.

Now, we deal with W 2
χ (hk

t )(0).

Lemma 7.2. The following equality holds,

MW 2
χ

(
hk

t

)
(0) = dc(χ)

∑
�=k,k−1

d(σ�)
(
logΓ (n − � + 1) + C

)
where C is a constant which does not depend on �.

Proof. For c ∈ R and Re(s) � 0, let

fc(s) =
∞∫

0

t s−1

∞∫
−∞

e−t (λ2+c2)
(
ψ(iλ + 1) + ψ(−iλ + 1)

)
dλdt.

It can be shown that the c-family of functions fc(s) extends meromorphically over C and that
fc(s) is regular over C−{ 1

2 ,− 1
2 ,− 3

2 , . . .} in the same way as the proof of Theorem 6.1. Denoting
by f ′

c(s) the derivative of fc(s) with respect to c, for Re(s) � 0,

f ′
c(s) = −2c

∞∫
0

t s

∞∫
−∞

e−t (λ2+c2)
(
ψ(iλ + 1) + ψ(−iλ + 1)

)
dλdt = −2cf (s + 1),

which also holds over C − { 1
2 ,− 1

2 ,− 3
2 , . . .} by the meromorphic extension. In particular, fc(0)

is smooth for c ∈ R, and

f ′
c(0) = −2c

∞∫
0

∞∫
−∞

e−t (λ2+c2)
(
ψ(iλ + 1) + ψ(−iλ + 1)

)
dλdt

= −2c

∞∫
−∞

1

λ2 + c2

(
ψ(iλ + 1) + ψ(−iλ + 1)

)
dλ

= −2i

∞∫
−∞

(
1

λ + ic
− 1

λ − ic

)
ψ(iλ + 1) dλ = −4πψ(1 + c).

From this formula, we see that fc(0) = −4π logΓ (1 + c) + a for a constant a for c ∈ [0,∞).
Applying this to the formula of W 2(hk), we obtain the expected equality. �
χ t



J. Park / Journal of Functional Analysis 257 (2009) 1713–1758 1743
Next, for W 3
χ (hk

t )(0) we have

Lemma 7.3. The following equality holds

lim
s→0

(
MW 3

χ

(
hk

t

)
(s) + δn(k)

ηo

s

)
= dc(χ)d(d, k)

(
log(n − k) − log(n − k + 1)

)
where the right-hand side is trivial if k = n.

Proof. For c ∈ (0,∞), we put

F(t) =
∞∫

−∞
e−t (λ2+c2) c

λ2 + c2
dλ.

By (6.12), we have

d

dt
F (t) = −c

√
π√
t
e−tc2

.

Hence, for Re(s) � 0,

∞∫
0

t s−1F(t) dt = −1

s

∞∫
0

t s
(

−c

√
π√
t
e−tc2

)
dt

= c
√

π

s

∞∫
0

t s−
1
2 e−tc2

dt =
√

π

s
c−2s Γ

(
s + 1

2

)
.

This implies

MW 3
χ

(
hk

t

)
(s) = −dc(χ)d(d, k)

2π

∑
�=k,k−1

(−1)k−�

√
π

s

(
1 − 2 log(n − �)s + O

(
s2))

× (√
π + Γ ′(1/2)s + O(s)

)
= −dc(χ)d(d, k)

2π

∑
�=k,k−1

(−1)k−�

(
π

s
− 2π log(n − �) + πψ(1/2) + O(s)

)
,

which completes the proof. �
Combining (7.5), (7.12) and Lemmas 7.1, 7.2, and 7.3,

detζ �k =
∏

�=k,k−1

Z2n−�

(
2(n − �)

)−α� exp

(
1

2

n−�∫
0

P̃�(iλ) dλ

)

× (n − �)(−1)k−�+1dc(χ)d(d,k)Γ (n − � + 1)−dc(χ)d(σ�)e−dc(χ)d(σ�)C (7.13)
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where the terms (2(n − �))−α� disappear if � = n. Let us remark that the order (−1)k−�+1 of
(n − �) depends on both k and � and this is due to the non-invariant property of the weighted
orbital invariant.

From Theorem 2.2 of [9] or Theorem 4.14 of [10], we have

Proposition 7.4. For s ∈ C, the following equalities hold

Zχ(σk, s + k)Γ (s − n + k + 1)−dc(χ)d(σk)s−dc(χ)d(d,k)

= Zχ(σk,2n − k − s)Γ (n − k − s + 1)−dc(χ)d(σk)
(
2(n − k) − s

)−dc(χ)d(d,k)

× detCk
χ(σk, n − k − s)d(σk) detCk

χ(σk,0)−d(σk) exp

(
−

s+k−n∫
0

P̃k(iz) dz

)
,

Zχ(σn, s + n)Γ (s + 1)−2dc(χ)d(σn)

= Zχ(σn,n − s) · Γ (−s + 1)−2dc(χ)d(σn)

× detCn
χ(σn,−s)d(σn) detCn

χ(σn,0)−d(σn) exp

(
−

s∫
0

2P̃n(iz) dz

)
.

By Proposition 7.4 and recalling

Sχ(�) := lim
s→−(n−�)

(s + n − �)−b� detC�
χ(σ�, s)

= (−1)b� lim
s→(n−�)

(
(s − n + �)b� detC�

χ(σ�, s)
)−1

,

we obtain

Z2n−� exp

( n−�∫
0

P̃�(iλ) dλ

)

= Z�

(
detC�

χ(σ�,0)Sχ (�)
)d(σ�)

(
2(n − �)

)dc(χ)d(d,�)

× (
(n − �)!)dc(χ)d(σ�)

(
(n − � − 1)!

)dc(χ)d(σ�)

(−1)α�+(n−�−1)dc(χ)d(σ�) (7.14)

where we also used the fact resz=−nΓ (z) = (−1)n

n! . Combining (7.13) and (7.14),

(detζ �k)
2 =

∏
�=k,k−1

Z2n−�Z�

(
detC�

χ(σ�,0)Sχ (�)
)d(σ�)

(
2(n − �)

)−2α�+dc(χ)d(d,�)

× (n − �)−dc(χ)(d(σ�)+(−1)k−�2d(d,k))e−2dc(χ)d(σ�)C(−1)α�+(n−�−1)dc(χ)d(σ�). (7.15)

Using detζ �k = detζ �2n+1−k , we have

T (XΓ ,χ) = (detζ �0)
2n+1 · (detζ �1)

−(2n−1) · (detζ �2)
(2n−3) . . . (detζ �n)

(−1)n . (7.16)
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From (6.14), we also have

lim
s→0

(
sN0Rχ(s)

)−1 = Z0

Z1

Z2

Z3
. . .Z

(−1)n−1

n−1 Z(−1)n

n Z
(−1)n+1

n+1 . . .
Z2n−2

Z2n−1
Z2n.

Now combining this and (7.15), (7.16) and recalling detC�
χ(σ�,0) = ±1, finally we conclude

that the following equality holds up to sign,

lim
s→0

(
sN0Rχ(s)

)−1 = C(XΓ ,χ) · C(d)dc(χ) · S(XΓ ,χ) · T (XΓ ,χ) (7.17)

Here

C(XΓ ,χ) :=
n−1∏
k=0

(−4(n − k)2)(−1)kαk , S(XΓ ,χ) :=
n−1∏
k=0

Sχ(k)(−1)k+1d(σk)

and

C(d) :=
n−1∏
k=0

2(−1)k+1d(d,k) · (n − k)(−1)k(2d(σk)(n−k)+d(d,k)).

Note that the terms e−2dc(χ)d(σ�)C ’s are combined to be 1 by the equality

n∑
�=0

(−1)� d(σ�) = 0.

8. Proof of Theorem 1.4

Throughout this section, we assume d = 2n.
As in the odd-dimensional case, we start with

M
(
Trr

(
e−t�k

) − βk

) = MIχ

(
hk

t

) + MHχ

(
hk

t

) + MUχ

(
hk

t

) + MWχ

(
hk

t

) − M(βk).

The Mellin transform of each term except Iχ (hk
t ) of this equality can be treated as in the odd-

dimensional case. For Iχ (hk
t ), we have

Lemma 8.1. When d = 2n, the following equality holds,

MIχ

(
hk

t

)
(s) = dimVχ · vol(Γ \ G)

22(2n−1)Γ (n)2

×
∑

�=k,k−1

d(σ�)

n−1∑
j=0

bj

Γ (s)

s − j − 1

∞∫
0

(
x + d2

�

)−(s−j−1) π cosh−2(π
√

x)

2
√

x
dx

where the bj ’s are given by p(σ�,λ) = π2−4(n−1)Γ (n)−2d(σk)λ tanh(πλ)
∑n−1

bj (λ
2 + d2)j .
j=0 �
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Proof. As in the derivation of (6.6), for Re(s) � 0 we obtain

∞∫
0

t s−1

∞∫
−∞

e−t (λ2+d2
� )λ tanh(πλ)

(
λ2 + d2

�

)j
dλdt

= (s − 1) · . . . · (s − j)

∞∫
0

t s−j−2

∞∫
0

e−t (x+d2
� )

(
π cosh−2(π

√
x)

2
√

x

)
dx dt

= Γ (s)

s − j − 1

∞∫
0

(
x + d2

�

)−(s−j−1)
(

π cosh−2(π
√

x)

2
√

x

)
dx,

which, by analytic continuation, also holds for s ∈ C. Since the term c̃(Γ,χ, τn) in (6.7) is a
constant with respect to t , its Mellin transform vanishes as in (7.2). Then this completes the
proof. �

By Lemma 8.1, as also expected from Theorem 6.1, the limit of MIχ(hk
t ) as s → 0 does

not exist by itself and we need to remove the simple pole of MIχ(hk
t ) at s = 0. Lemma 8.1

immediately implies

Proposition 8.2.

lim
s→0

(
MIχ

(
hk

t

)
(s) − Γ (s)ak

) = dimVχ · vol(Γ \ G)a(n, k)

where ak is the residue of MIχ(hk
t )(s) at s = 0 and a(n, k) is a constant that is independent

of Γ , but depends only on G.

Following [7], we write

a ∼ b if a = exp
(
c · dimVχ · vol(Γ \ G)

)
b (8.1)

for a constant c that is independent of Γ . We can proceed as in the odd-dimensional case and
obtain

detζ �k ∼
∏

�=k,k−1

Z2d0−�

(
2(d0 − �)

)−α� exp

(
1

2

d0−�∫
0

P̃�(iλ) dλ

)

× (d0 − �)(−1)k−�+1dc(χ)d(d,k)Γ (d0 − � + 1)−dc(χ)d(σ�)e−dc(χ)d(σ�)C (8.2)

where Z2d0−� denotes the leading coefficient of the Laurent expansion of Zχ(σ�,2d0 − � + x)

at x = 0 as in (7.8), d0 = d−1
2 , P̃�(s) = −dc(χ)P d

� (s) + C(χ, k) with the constant C(χ, k) from
Uχ(hk), which is determined by (4.14), (4.15). Now by Theorem 4.14 of [10],
t
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Proposition 8.3. For s ∈ C, the following equality holds

Zχ(σk, s + k)Γ (s − d0 + k + 1)−dc(χ)d(σk)s−dc(χ)d(d,k)Γd(σk, s + k)

= Zχ(σk,2d0 − k − s)Γ (d0 − k − s + 1)−dc(χ)d(σk)

× (
2(d0 − k) − s

)−dc(χ)d(d,k)
Γd(σk,2d0 − k − s)

× detCk
χ(σk, d0 − k − s)d(σk) detCk

χ(σk,0)−d(σk) exp

(
−

s+k−d0∫
0

P̃k(iz) dz

)

where

Γd(σk, s) =
[

k∏
�=0

(
Γd(s − �)Γd(s + � + 1)

)(−1)�( d
k−�)

]−dimVχE(XΓ )

.

Here Γd(s) is the multiple gamma function of order d introduced in [15] and E(XΓ ) denotes the
Euler characteristic of XΓ .

From Proposition 8.3,

Z2d0−� exp

( d0−�∫
0

P̃�(iλ) dλ

)

∼ Z�

(
detC�

χ(σ�,0)Sχ (�)
)d(σ�)

(
2(d0 − �)

)dc(χ)d(d,�)

× Γ (d0 − � + 1)dc(χ)d(σ�)Γ (−d0 + � + 1)−dc(χ)d(σ�)(−1)α� (8.3)

where

Sχ(�) := lim
s→−(d0−�)

(s + d0 − �)−b� detC�
χ(σ�, s).

The ambiguity ‘∼’ in (8.3) comes from the constant term of the Laurent expansion of
Γd(σ�,2d0 − s)Γd(σ�, s)

−1 at s = � and the following equality given in Proposition 4.4 of [9],

vol(Γ \ G)
n

24n−3

(
2n − 1

n

)
= (−1)nE(XΓ ).

Combining (8.2) and (8.3),

(detζ �k)
2 ∼

∏
�=k,k−1

Z2d0−�Z�

(
detC�

χ(σ�,0)Sχ (�)
)d(σ�)

× (−1)α�
(
2(d0 − �)

)−2α�+dc(χ)d(d,�)(
Γ (d0 − � + 1)Γ (−d0 + � + 1)

)−dc(χ)d(σ�)

× (d0 − �)(−1)k−�+12dc(χ)d(d,k)e−2dc(χ)d(σ�)C. (8.4)
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Using detζ �k = detζ �2n−k , we have

T (XΓ ,χ) = (detζ �0)
−2n · (detζ �1)

2n · (detζ �2)
−2n . . . (detζ �n−1)

(−1)n2n

· (detζ �n)
(−1)n+1n. (8.5)

By (8.4) and the symmetry in (8.5), all terms cancel except the term (d0 − �)(−1)k−�+12dc(χ)d(d,k)

if we plug (8.4) into (8.5). For instance, the leading terms Z� of Zχ(σ�, �) combined to

(Z0Z2n−1)
−n · (Z1Z2n−2)

n · (Z0Z2n−1)
n . . . (Zn−1Zn)

(−1)nn · (Zn−2Zn+1)
(−1)nn

· (Zn−1Zn)
(−1)n+1n = 1. (8.6)

The combination of terms (d0 − �)(−1)k−�+12dc(χ)d(d,k) results in

T (XΓ ,χ) ∼
(

n−1∏
k=0

(d0 − k)(−1)kn((2n−1
k+1 )−(2n−2

k ))

)dc(χ)

.

Recalling the definition in (8.1),

T (XΓ ,χ) = exp
(
a(G)dimVχ · vol(Γ \ G)

)( n−1∏
k=0

(d0 − k)(−1)kn((2n−1
k+1 )−(2n−2

k ))

)dc(χ)

(8.7)

where a(G) is a constant depending only on G, not on Γ . Now let us observe that the equality
(8.7) still holds with dc(χ) = 0 if XΓ is compact, that is,

1 = T (XΓ ,χ) = exp
(
a(G)dimVχ · vol(Γ \ G)

)
for any co-compact discrete group Γ ⊂ G. Hence it follows that the constant a(G) = 0. Finally
we conclude

T (XΓ ,χ) =
(

n−1∏
k=0

(d0 − k)(−1)kn((2n−1
k+1 )−(2n−2

k ))

)dc(χ)

. (8.8)
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Appendix A. Proof of Theorem 5.3

A.1. Odd-dimensional case: d = 2n + 1

The case of n = 1 can be computed as in the cases n � 2. Hence we assume that n � 2 in the
following proof. The highest weights μk,μ

±
n of the representations σk , σ±

n of M = SO(2n) ⊂
K = SO(2n + 1) are given by

μk = e2 + e3 + · · · + ek+1 (0 � k � n − 1), μ±
n = e2 + e3 + · · · + en ± en+1.

Recalling

ρM = (n − 1)e2 + (n − 2)e3 + · · · + en,

we have

λσk
= iλe1 + μk + ρM

= iλe1 + ne2 + (n − 1)e3 + · · · + (n − k + 1)ek+1 + (n − k − 1)ek+2 · · · + en,

λσ±
n

= iλe1 + μ±
n + ρM

= iλe1 + ne2 + (n − 1)e3 + · · · + 2en ± en+1.

First we consider Π(sαλσ ) for α ∈ ΣA, which are given by e1 − e�, e1 + e� for 2 � � � n+ 1.
Then we have

s(e1−e�)(iλe1 + μk + ρM)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iλe� + ne2 + · · · + (n − � + 2)e1 + · · · + (n − k + 1)ek+1

+ (n − k − 1)ek+2 + · · · + en if 2 � � � k + 1,

iλe� + ne2 + · · · + (n − k + 1)ek+1
+ (n − k − 1)ek+2 + · · · + (n − � + 1)e1 + · · · + en if k + 2 � � � n,

iλen+1 + ne2 + · · · + (n − k + 1)ek+1 + (n − k − 1)ek+2 + · · · + en if � = n + 1,

s(e1−e�)

(
iλe1 + μ±

n + ρM

)
=

{
iλe� + ne2 + · · · + (n − � + 2)e1 + · · · + 2en ± en+1 if 2 � � � n,

iλen+1 + ne2 + · · · + 2en ± e1 if � = n + 1,

s(e1+e�)(iλe1 + μk + ρM)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−iλe� + ne2 + · · · − (n − � + 2)e1 + · · · + (n − k + 1)ek+1
+ (n − k − 1)ek+2 + · · · + en if 2 � � � k + 1,

−iλej + ne2 + · · · + (n − k + 1)ek+1
+ (n − k − 1)ek+2 + · · · − (n − � + 1)e1 + · · · + en if k + 2 � � � n,

−iλen+1 + ne2 + · · · + (n − k + 1)ek+1
+ (n − k − 1)ek+2 + · · · + en if � = n + 1,



1750 J. Park / Journal of Functional Analysis 257 (2009) 1713–1758
s(e1+e�)

(
iλe1 + μ±

n + ρM

)
=

{−iλe� + ne2 + · · · − (n − � + 2)e1 + · · · + 2en ± en+1 if 2 � � � n,

−iλen+1 + ne2 + · · · + 2en ∓ e1 if � = n + 1.

The above computations give us the following equalities,

Π
(
s(e1±e�)(iλe1 + μk + ρM)

)
= Ck

�−1

(
λ2 + n2) · (λ2 + (n − 1)2) · · · (λ2 + (n − � + 3)2) · (−λ2 − (n − � + 1)2) · · ·

× (−λ2 − (n − k + 1)2) · (−λ2 − (n − k − 1)2) · · · (−λ2) if 2 � � � k + 1,

Π
(
s(e1±e�)(iλe1 + μk + ρM)

)
= Ck

�

(
λ2 + n2) · (λ2 + (n − 1)2) · · · (λ2 + (n − k + 1)2) · (λ2 + (n − k − 1)2) · · ·

× (
λ2 + (n − � + 2)2) · (−λ2 − (n − �)2) · · · (−λ2) if k + 2 � � � n + 1,

Π
(
s(e1±e�)

(
iλe1 + μ±

n + ρM

))
= Cn

�−1

(
λ2 + n2) · (λ2 + (n − 1)2) · · · (λ2 + (n − � + 3)2) · (−λ2 − (n − � + 1)2) · · ·

× (−λ2 − 22)(−λ2 − 1
)

where

Ck
� =

∏
0�a<b�n

a,b �=(n−k),(n−�+1)

(
b2 − a2)

for 0 � k � n, 2 � � � n + 1. By the above computation, we can put

P n
k,� := Π

(
se1±e�

(iλe1 + μk + ρM)
)
,

P n
n,� := Π

(
se1±e�

(
iλe1 + μ±

n + ρM

))
,

which are degree 2(n − 1) even polynomials of λ.
Second, we compute the part (ψ(1 + λσ (Hα)) + ψ(1 − λσ (Hα)). To do so, note that

(iλe1 + μk + ρM)(Hα) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

iλ − (n − � + 2) if α = e1 − e�, 2 � � � k + 1,

iλ − (n − � + 1) if α = e1 − e�, k + 2 � � � n,

i if α = e1 − en+1,

iλ + (n − � + 2) if α = e1 + e�, 2 � � � k + 1,

iλ + (n − � + 1) if α = e1 + e�, k + 2 � � � n,

iλ if α = e1 + en+1,

(
iλe1 + μ±

n + ρM

)
(Hα) =

⎧⎪⎪⎨⎪⎪⎩
iλ − (n − � + 2) if α = e1 − e�, 2 � � � n,

iλ ∓ 1 if α = e1 − en+1,

iλ + (n − � + 2) if α = e1 + e�, 2 � � � n,
iλ ± 1 if α = e1 + en+1.
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From these equalities, we can see that (ψ(1 + (iλe1 + μk + ρM)(Hα)),

ψ(1 − (iλe1 + μk + ρM)(Hα)) is given by

ψ(iλ − n + � − 1), ψ(−iλ + n − � + 3) for α = e1 − e�, 2 � � � k + 1,

ψ(iλ − n + �), ψ(−iλ + n − � + 2) for α = e1 − e�, k + 2 � � � n,

ψ(iλ + 1), ψ(−iλ + 1) for α = e1 − en+1,

ψ(iλ + n − � + 3), ψ(−iλ − n + � − 1) for α = e1 + e�, � � � k + 1,

ψ(iλ + n − � + 2), ψ(−iλ − n + �) for α = e1 + e�, k + 2 � � � n,

ψ(iλ + 1), ψ(−iλ + 1) for α = e1 + en+1,

and (ψ(1 + (iλe1 + μ±
n + ρM)(Hα)),ψ(1 − (iλe1 + μ±

n + ρM)(Hα)) is given by

ψ(iλ − n + � − 1), ψ(−iλ + n − � + 3) for α = e1 − e�, 2 � � � n,

ψ(iλ), ψ(−iλ + 2) for α = e1 − en+1, σ = σ+,

ψ(iλ + 2), ψ(−iλ) for α = e1 − en+1, σ = σ−,

ψ(iλ + n − � + 3), ψ(−iλ − n + � − 1) for α = e1 + e�, 2 � � � n,

ψ(iλ + 2), ψ(−iλ) for α = e1 + en+1, σ = σ+,

ψ(iλ), ψ(−iλ + 2) for α = e1 + en+1, σ = σ−.

Putting

Ψn(iλ) := ψ(iλ − n) + ψ(−iλ − n) + ψ(iλ + 1) + ψ(−iλ + 1),

we have

ψ(iλ − n + � − 1) + ψ(−iλ − n + � − 1) + ψ(iλ + n − � + 3) + ψ(−iλ + n − � + 3)

= Ψn(iλ) + 2

λ2 + 1
+ · · · + 2(n − � + 1)

λ2 + (n − � + 1)2
+ −2(n − � + 3)

λ2 + (n − � + 3)2
+ · · · + −2n

λ2 + n2
,

ψ(iλ − n + �) + ψ(−iλ − n + �) + ψ(iλ + n − � + 2) + ψ(−iλ + n − � + 2)

= Ψn(iλ) + 2

λ2 + 1
+ · · · + 2(n − �)

λ2 + (n − �)2
+ −2(n − � + 2)

λ2 + (n − � + 2)2
+ · · · + −2n

λ2 + n2
,

2
(
ψ(iλ + 1) + ψ(−iλ + 1)

) = Ψn(iλ) + −2

λ2 + 1
+ · · · + −2n

λ2 + n2
,

ψ(iλ + 2) + ψ(−iλ + 2) + ψ(iλ) + ψ(−iλ) = Ψn(iλ) + −2 · 2

λ2 + 22
+ · · · + −2n

λ2 + n2
.

Now we assume that 0 � k � n − 1. Using the formula
∑

α∈ΣA
Π(sα(λσk

)) = 2Π(λσk
) (see

the last line in [13, p. 95]) and the above formulas to decompose

1

2

∑ Π(sαλσk
)

Π(ρM)
× (

ψ
(
1 + λσk

(Hα)
) + ψ

(
1 − λσk

(Hα)
))
α∈ΣA
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into

d(σk)

2
Ψn(iλ) = d(σk)

2

(
ψ(iλ − n) + ψ(−iλ − n) + ψ(iλ + 1) + ψ(−iλ + 1)

)
(where we use the Weyl’s dimension formula for d(σk)) and

1

2Π(ρM)

(
k+1∑
�=2

P n
k,�(λ)Qn,�(λ) +

n+1∑
�=k+2

P n
k,�(λ)Rn,�(λ)

)

where

Qn,�(λ) = 2

λ2 + 1
+ · · · + 2(n − � + 1)

λ2 + (n − � + 1)2
+ −2(n − � + 3)

λ2 + (n − � + 3)2
+ · · · + −2n

λ2 + n2
,

Rn,�(λ) = 2

λ2 + 1
+ · · · + 2(n − �)

λ2 + (n − �)2
+ −2(n − � + 2)

λ2 + (n − � + 2)2
+ · · · + −2n

λ2 + n2
.

By the definitions of P n
k,�(λ), Qn,�(λ) and Rn,�(λ), we can see that P n

k,�(λ)Qn,�(λ), (or

P n
k,�(λ)Rn,�(λ)) is the sum of even polynomials of degree 2n−4, which is the polynomial P d

k (λ)

in Theorem 5.3, and

Rn
k := 1

Π(ρM)

(n − k)

λ2 + (n − k)2

( ∑
2���k+1

qn
k,� +

∑
k+2���n+1

rn
k,�

)

where

qn
k,� = (−1)k+�+1

∏
0�a<b�n
a,b �=n−�+2

(
b2 − a2),

rn
k,� = (−1)k+�+1

∏
0�a<b�n
a,b �=n−�+1

(
b2 − a2).

By the Weyl’s multiplicity formula for d(σk), we have

Rn
k = (−1)k+1(n − k)

λ2 + (n − k)2

(
k−1∑
j=0

(−1)j d(σj ) +
2n∑

j=k+1

(−1)j+1d(σj )

)

where we also use

n∑
(−1)j d(σj ) =

2n∑
(−1)j+1d(σj ).
j=0 j=n
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By an essentially same computation, we decompose

1

2

∑
α∈ΣA

Π(sαλσ±)

Π(ρM)
× (

ψ
(
1 + λσ±(Hα)

) + ψ
(
1 − λσ±(Hα)

))
into

d(σk)

2
Ψn(iλ) = d(σ±)

2

(
ψ(iλ − n) + ψ(−iλ − n) + ψ(iλ + 1) + ψ(−iλ + 1)

)
and

1

2Π(ρM)

n+1∑
�=2

P n
n,�(λ)Qn,�(λ).

By the definitions of P n
n,�(λ) and Qn,�(λ), we can see that P n

n,�(λ)Qn,�(λ) is an even polynomial

of degree 2n − 4, which we can denote by P d
n (λ).

A.2. Even-dimensional case: d = 2(n + 1)

For convenience of the computation, we let n = d
2 − 1 so that d = 2(n + 1) throughout this

subsection. The case of n = 0 can be computed as in the cases n � 1. Hence we assume that
n � 1 in the following proof.

With respect to the inner product on t∗
C

induced from 〈·,·〉 in (2.1), we choose an orthonormal
basis {ei} of t∗

C
such that e1 ∈ a∗

C
. Then we have

ΣG = {
ei (1 � i � n + 1), ei − ej (1 � i < j � n + 1), ei + ej (1 � i < j � n + 1)

}
,

ΣA = {
e1, e1 − ej (1 < j � n + 1), e1 + ej (1 < j � n + 1)

}
.

Let us write λσk
in terms of {ei}. The highest weights μk of the representations σk of M =

SO(2n + 1) ⊂ K = SO(2(n + 1)) are given by

μk = e2 + e3 + · · · + ek+1 (0 � k � n).

Recalling

ρM =
(

n − 1

2

)
e2 +

(
n − 3

2

)
e3 + · · · + 1

2
en+1,

we have

λσk
= iλe1 + μk + ρM

= iλe1 +
(

n + 1

2

)
e2 +

(
n − 1

2

)
e3 + · · ·

+
(

n − k + 3
)

ek+1 +
(

n − k − 1
)

ek+2 · · · + 1
en+1.
2 2 2
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First we consider Π(sαλσ ) for α ∈ ΣA, which are given by e1, e1 − e�, e1 + e� for 2 � � �
n + 1. Then we have

se1(iλe1 + μk + ρM) = −iλe1 +
(

n + 1

2

)
e2 +

(
n − 1

2

)
e3 + · · ·

+
(

n − k + 3

2

)
ek+1 +

(
n − k − 1

2

)
ek+2 · · · + 1

2
en+1,

s(e1−e�)(iλe1 + μk + ρM)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iλe� + (n + 1

2 )e2 + · · · + (n − � + 5
2 )e1 + · · · + (n − k + 3

2 )ek+1

+ (n − k − 1
2 )ek+2 + · · · + 1

2en+1 if 2 � � � k + 1,

iλe� + (n + 1
2 )e2 + · · · + (n − k + 3

2 )ek+1

+ (n − k − 1
2 )ek+2 + · · · + (n − � + 3

2 )e1 + · · · + 1
2en+1 if k + 2 � � � n + 1,

s(e1+e�)(iλe1 + μk + ρM)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−iλe� + (n + 1

2 )e2 + · · · − (n − � + 5
2 )e1 + · · ·

+ (n − k + 3
2 )ek+1 + (n − k − 1

2 )ek+2 + · · · + 1
2en+1 if 2 � � � k + 1,

−iλe� + (n + 1
2 )e2 + · · · + (n − k + 3

2 )ek+1

+ (n − k − 1
2 )ek+2 + · · · − (n − � + 3

2 )e1 + · · · + 1
2en+1 if k + 2 � � � n + 1.

Recall that ΣM consists of ei for 2 � i � n + 1, ei ± ej for 2 � i < j � n + 1 and the co-root
Hα of α satisfies α(Hα) = 2. By the Weyl’s dimension formula, for α = e1,

Π
(
se1(iλe1 + μk + ρM)

) = d(σk)Π(ρM).

For the other cases, it is a polynomial of λ as follows:

Π
(
s(e1±e�)(iλe1 + μk + ρM)

)
= Ck

�−1(∓iλ)

(
λ2 +

(
n + 1

2

)2)
· · ·

(
λ2 +

(
n − � + 7

2

)2)
·
(

−λ2 −
(

n − � + 3

2

)2)
· · ·

×
(

−λ2 −
(

n − k + 3

2

)2)
·
(

−λ2 −
(

n − k − 1

2

)2)
· · ·

×
(

−λ2 −
(

1

2

)2)
if 2 � � � k + 1,

Π
(
s(e1±e�)(iλe1 + μk + ρM)

)
= Ck

� (∓iλ)

(
λ2 +

(
n + 1

2

)2)
· · ·

(
λ2 +

(
n − k + 3

2

)2)
·
(

λ2 +
(

n − k − 1

2

)2)
· · ·

×
(

λ2 +
(

n − � + 5

2

)2)
·
(

−λ2 −
(

n − � + 1

2

)2)
· · ·

×
(

−λ2 −
(

1
)2)

if k + 2 � � � n + 1,

2
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where

Ck
� = 2n

∏
0�a<b�n

a,b/∈{n−k,n−�}

((
b + 1

2

)2

−
(

a + 1

2

)2)
·

∏
0�c�n

c/∈{n−k,n−�}

(
c + 1

2

)

for 0 � k � n, 2 � � � n + 1. By the above computation, we can put

P n
k,�(λ) := Π

(
se1±e�

(iλe1 + μk + ρM)
)

which is degree 2n − 3 odd polynomial of λ.
Second we compute the part (ψ(1 + λσ (Hα)) + ψ(1 − λσ (Hα)) for α ∈ ΣA. For this,

(iλe1 + μk + ρM)(Hα) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2iλ if α = 2e1,

iλ − (n − � + 5
2 ) if α = e1 − e�, 2 � � � k + 1,

iλ − (n − � + 3
2 ) if α = e1 − e�, k + 2 � � � n + 1,

iλ + (n − � + 5
2 ) if α = e1 + e�, 2 � � � k + 1,

iλ + (n − � + 3
2 ) if α = e1 + e�, k + 2 � � � n + 1.

From this, we can see that (ψ(1 + (iλe1 + μk + ρM)(Hα)),ψ(1 − (iλe1 + μk + ρM)(Hα)) is
given by

ψ(2iλ + 1), ψ(−2iλ + 1) for α = 2e1,

ψ

(
iλ − n + � − 3

2

)
, ψ

(
−iλ + n − � + 7

2

)
for α = e1 − e�, 2 � � � k + 1,

ψ

(
iλ − n + � − 1

2

)
, ψ

(
−iλ + n − � + 5

2

)
for α = e1 − e�, k + 2 � � � n + 1,

ψ

(
iλ + n − � + 7

2

)
, ψ

(
−iλ − n + � − 3

2

)
for α = e1 + e�, 2 � � � k + 1,

ψ

(
iλ + n − � + 5

2

)
, ψ

(
−iλ − n + � − 1

2

)
for α = e1 + e�, k + 2 � � � n + 1.

For the sum over α ∈ ΣA in (5.5), we first consider the term with α = e1. By the results
obtained above,

1

2
β(He1)

Π(se1λσ )

Π(ρM)

(
ψ

(
1 + λσ (He1)

) + ψ
(
1 − λσ (He1)

))
= d(σk)

(
ψ(2iλ + 1) + ψ(−2iλ + 1)

)
= d(σk)

(
ψ

(
iλ + 1

)
+ ψ

(
−iλ + 1

)
+ ψ(iλ + 1) + ψ(−iλ + 1) + 4 log 2

)

2 2 2
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= d(σk)

2

(
ψ

(
iλ − n − 1

2

)
+ ψ

(
−iλ − n − 1

2

)
+ ψ(iλ + 1) + ψ(−iλ + 1)

+ −2 · 1
2

λ2 + ( 1
2 )2

+ · · · + −2(n + 1
2 )

λ2 + (n + 1
2 )2

+ 4 log 2

)
(A.1)

by the properties of the digamma function ψ(z). Now we take a sum over e1 +e�, e1 −e� in (5.5).
For 2 � � � k + 1,

1

2

∑
α=e1±e�

β(Hα)
Π(sαλσ )

Π(ρM)

(
ψ

(
1 + λσ (Hα)

) + ψ
(
1 − λσ (Hα)

))
= 1

2

Π(se1−e�
λσ )

Π(ρM)

(
ψ

(
iλ − n + � − 3

2

)
+ ψ

(
−iλ + n − � + 7

2

)
− ψ

(
iλ + n − � + 7

2

)
− ψ

(
−iλ − n + � − 3

2

))
= 1

2

Π(se1−e�
λσ )

Π(ρM)

(
4iλ

λ2 + ( 1
2 )2

+ · · · + 4iλ

λ2 + (n − � + 3
2 )2

+ 2iλ

λ2 + (n − � + 5
2 )2

)
, (A.2)

and similarly for k + 2 � � � n + 1,

1

2

∑
α=e1±e�

β(Hα)
Π(sαλσ )

Π(ρM)

(
ψ

(
1 + λσ (Hα)

) + ψ
(
1 − λσ (Hα)

))
= 1

2

Π(se1−e�
λσ )

Π(ρM)

(
4iλ

λ2 + ( 1
2 )2

+ · · · + 4iλ

λ2 + (n − � + 1
2 )2

+ 2iλ

λ2 + (n − � + 3
2 )2

)
. (A.3)

From the expression of Π(se1−e�
λσ ), we can see that the term in (A.2), (A.3) consists of a

polynomial of degree 2n−2 if d = 2(n+1) � 4 and some rational functions whose denominators
are λ2 + (n − k + 1

2 )2, λ2 + (n − � + 5
2 )2 when 2 � � � k + 1 and λ2 + (n − � + 3

2 )2 when
k + 2 � � � n + 1. The numerators of these rational functions are given by

2iλ
P n

k,�(λ)

Π(ρM)

∣∣∣∣
λ=i(n−k+ 1

2 )

= (−1)k−�−12

(
n − k + 1

2

)
d(σ�) for 2 � � � k + 1,

iλ
P n

k,�(λ)

Π(ρM)

∣∣∣∣
λ=i(n−�+ 5

2 )

=
(

n − � + 5

2

)
d(σk) for 2 � � � k + 1,

iλ
P n

k,�(λ)

Π(ρM)

∣∣∣∣
λ=i(n−�+ 3

2 )

=
(

n − � + 3

2

)
d(σk) for k + 2 � � � n + 1,

so that the sum of these rational functions over 2 � � � n + 1 is

(−1)k2
∑

1���k

(−1)�d(σ�−1)
(n − k + 1

2 )

λ2 + (n − k + 1
2 )2

+ d(σk)
∑

2���n+1

(n − � + 3
2 )

λ2 + (n − � + 3
2 )2

. (A.4)
��=k+1
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Finally taking the terms in (A.1) and (A.4) with a polynomial denoted by Pk(λ), we obtain

Ω(σk,λ) = −d(σk)

2

(
ψ

(
iλ − n − 1

2

)
+ ψ

(
−iλ − n − 1

2

)
+ ψ(iλ + 1) + ψ(−iλ + 1)

)

+ (−1)k(n − k + 1
2 )

λ2 + (n − k + 1
2 )2

(
k−1∑
j=0

(−1)j d(σj ) +
2n+1∑

j=k+1

(−1)j+1d(σj )

)
− Pk(λ).
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